首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   12篇
  国内免费   11篇
测绘学   12篇
大气科学   14篇
地球物理   64篇
地质学   105篇
海洋学   7篇
综合类   4篇
自然地理   14篇
  2024年   1篇
  2023年   2篇
  2022年   13篇
  2021年   11篇
  2020年   17篇
  2019年   6篇
  2018年   23篇
  2017年   24篇
  2016年   26篇
  2015年   13篇
  2014年   20篇
  2013年   25篇
  2012年   7篇
  2011年   8篇
  2010年   5篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有220条查询结果,搜索用时 93 毫秒
41.
China is a disaster-prone country, and these disasters have diverse characteristics, a wide scope of distribution, high frequency, and large losses. China has advanced community-based disaster management (CBDM) capacity. Community is the bottom unit of the society, and CBDM is the foundation of the entire society’s disaster management system. A series of domestic major emergency incidents and disasters and international disaster reduction activities have promoted the formation of the CBDM concept, the implementation of capacity building activities, and the improvement of policy and laws. Thus far, the CBDM system has been preliminarily formed in China, and relevant rules and regulations have been promulgated and implemented. Furthermore, disaster reduction activities, such as the construction of the national comprehensive disaster reduction community and national safe community, have been promoted nationwide. As a result, China’s disaster-resistance capacity has largely improved. However, it is only in the initial phase of CBDM implementation, which remains plagued by several challenges and problems, such as the deficiency of community resident participation, management organizations, disaster risk assessment methods, NGO development, and safety culture cultivation.  相似文献   
42.
The main objective of the science of phenology is to identify the time of the occurrence of conspicuous periodic phenomena in plants under the impact of climatic factors. The study of phonologic phenomena through visual observations and terrestrial studies and temperature registration using a thermo hydrometer in different altitudinal levels and using the satellite data of IRS1C/1D LISSIII in twelve 1-ha plots in pure beech stands in the altitudinal range of 500 to 1,200 m above the sea level from April to December was carried out in such a way that for each month, one image of sensor was allocated. The produced vegetation indices were matched with terrestrial observations of the phenology periods in each month in the beech plots. The results show that the increase of the altitude above the sea level functions like latitude and its most remarkable impact is the decreasing of the temperature and the shortening of growing season. The terrestrial observations carried out in the plots show that a sudden increase in the temperature leads to the faster growth and emergence of the leaves. The produced correlation coefficient between the temperature and the emergence of the leaves was (p?=?0.01) r?=?0.87. Moreover, the end of fall in the studied region has a direct and significant relation with temperature. The amount of correlation coefficient between the temperature and end of fall in the studied region is equal to (p?=?0.01) r?=?0.91. Normalized difference vegetation index (NDVI) is more related to the growth and nurturing of the leaves. The amount of NDVI during the growth of the leaves, completion of the leaves, and fall of the leaves is equal to 0.35, 0.6, and 0.25, respectively.  相似文献   
43.
Vegetation indices have been introduced for analyzing and assessing the status of quantitative and qualitative characteristics of vegetation using satellite images. However, choosing the best indices to be used in forest biodiversity and vegetation is one of the important problems faced by the users. The purpose of this research is to evaluate six vegetation indices in the analysis of tree species diversity in the northern forests of Iran. The present research uses LISS III sensor data from IRS-P6 satellite. Geometric rectification of images was performed using ground control points, and Chavez model was used for atmospheric correction of the data. The six spectral vegetation indices included NDVI, IPVI, Ashburn Vegetation Index (AVI), TVI, TTVI, and RVI. Shannon–Wiener species diversity index was used to analyze diversity, and the value of the index was calculated in each sample plot. Then, the spectral values of each sample plot were extracted from different bands. The best subset regression was used to analyze the relationship between species diversity and the related bands. The results obtained from the regression showed that polynomial equations under scrutiny as independent variables can assess tree and shrub species diversity better than other bands and compounds used (R 2?=?0.47). The obtained results also indicated a higher capacity in the case of the AVI index for estimating tree species diversity in the under study area.  相似文献   
44.
45.
46.
47.
Thermotectonic history of the Trans-Himalayan Ladakh Batholith in the Kargil area, N. W. India, is inferred from new age data obtained here in conjunction with previously published ages. Fission-track (FT) ages on apatite fall around 20±2 Ma recording cooling through temperatures of ∼100°C and indicating an unroofing of 4 km of the Ladakh Range since the Early Miocene. Coexisting apatite and zircon FT ages from two samples in Kargil show the rocks to have cooled at an average rate of 5–6°C/Ma in the past 40 Ma. Zircon FT ages together with mica K−Ar cooling ages from the Ladakh Batholith cluster around 40–50 Ma, probably indicating an Eocene phase of uplift and erosion that affected the bulk of the batholith after the continental collision of India with the Ladakh arc at 55 Ma. Components of the granitoids in Upper Eocene-Lower Oligocene sediments of the Indus Molasse in Ladakh supports this idea. Three hornblende K−Ar ages of 90 Ma, 55 Ma, and 35 Ma are also reported; these distinctly different ages probably reflect cooling through 500–550°C of three phases of I-type plutonism in Ladakh also evidenced by other available radiometric data: 102 Ma (mid-Cretaceous), 60 Ma (Palaeocene), and 40 Ma (Late Eocene); the last phase being localised sheet injections. The geodynamic implications of the age data for the India-Asia collision are discussed.  相似文献   
48.
49.
The Ardebil plain, which is located in northwest Iran, has been faced with a recent and severe decline in groundwater level caused by a decrease of precipitation, successive long‐term droughts, and overexploitation of groundwater for irrigating the farmlands. Predictions of groundwater levels can help planners to deal with persistent water deficiencies. In this study, the support vector regression (SVR) and M5 decision tree models were used to predict the groundwater level in Ardebil plain. The monthly groundwater level data from 24 piezometers for a 17‐year period (1997 to 2013) were used for training and test of models. The model inputs included the groundwater levels of previous months, the volume of entering precipitation into every cell, and the discharge of wells. The model output was the groundwater level in the current month. In order to evaluate the performance of models, the correlation coefficient (R) and the root‐mean‐square error criteria were used. The results indicated that both SVR and M5 decision tree models performed well for the prediction of groundwater level in the Ardebil plain. However, the results obtained from the M5 decision tree model are more straightforward, more easily applied, and simpler to interpret than those from the SVR. The highest accuracy was obtained using the SVR model to predict the groundwater level from the Ghareh Hasanloo and Khalifeloo piezometers with R = 0.996 and R = 0.983, respectively.  相似文献   
50.
This study presents a time-dependent approach for seismic hazard in Tehran and surrounding areas. Hazard is evaluated by combining background seismic activity, and larger earthquakes may emanate from fault segments. Using available historical and paleoseismological data or empirical relation, the recurrence time and maximum magnitude of characteristic earthquakes for the major faults have been explored. The Brownian passage time (BPT) distribution has been used to calculate equivalent fictitious seismicity rate for major faults in the region. To include ground motion uncertainty, a logic tree and five ground motion prediction equations have been selected based on their applicability in the region. Finally, hazard maps have been presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号