首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   487篇
  免费   24篇
  国内免费   18篇
测绘学   26篇
大气科学   28篇
地球物理   127篇
地质学   243篇
海洋学   19篇
天文学   45篇
综合类   5篇
自然地理   36篇
  2024年   1篇
  2023年   3篇
  2022年   21篇
  2021年   27篇
  2020年   26篇
  2019年   21篇
  2018年   44篇
  2017年   58篇
  2016年   59篇
  2015年   25篇
  2014年   45篇
  2013年   50篇
  2012年   28篇
  2011年   30篇
  2010年   17篇
  2009年   15篇
  2008年   6篇
  2007年   3篇
  2006年   5篇
  2005年   5篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   4篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1989年   4篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1978年   4篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有529条查询结果,搜索用时 15 毫秒
81.
In the present research, effect of silica fume as an additive and oil polluted sands as aggregates on compressive strength of concrete were investigated experimentally. The amount of oil in the designed mixtures was assumed to be constant and equal to 2% of the sand weight. Silica fume accounting for 10%, 15% and 20% of the weight is added to the designed mixture. After preparation and curing, concrete specimens were placed into the three different conditions: fresh, brackish and saltwater environments (submerged in fresh water, alternation of exposed in air & submerged in sea water and submerged in sea water). The result of compressive strength tests shows that the compressive strength of the specimens consisting of silica fume increases significantly in comparison with the control specimens in all three environments. The compressive strength of the concrete with 15% silica fume content was about 30% to 50% higher than that of control specimens in all tested environments under the condition of using polluted aggregates in the designed mixture.  相似文献   
82.
One important tool for water resources management in arid and semi-arid areas is groundwater potential mapping. In this study, four data-mining models including K-nearest neighbor (KNN), linear discriminant analysis (LDA), multivariate adaptive regression splines (MARS), and quadric discriminant analysis (QDA) were used for groundwater potential mapping to get better and more accurate groundwater potential maps (GPMs). For this purpose, 14 groundwater influence factors were considered, such as altitude, slope angle, slope aspect, plan curvature, profile curvature, slope length, topographic wetness index (TWI), stream power index, distance from rivers, river density, distance from faults, fault density, land use, and lithology. From 842 springs in the study area, in the Khalkhal region of Iran, 70 % (589 springs) were considered for training and 30 % (253 springs) were used as a validation dataset. Then, KNN, LDA, MARS, and QDA models were applied in the R statistical software and the results were mapped as GPMs. Finally, the receiver operating characteristics (ROC) curve was implemented to evaluate the performance of the models. According to the results, the area under the curve of ROCs were calculated as 81.4, 80.5, 79.6, and 79.2 % for MARS, QDA, KNN, and LDA, respectively. So, it can be concluded that the performances of KNN and LDA were acceptable and the performances of MARS and QDA were excellent. Also, the results depicted high contribution of altitude, TWI, slope angle, and fault density, while plan curvature and land use were seen to be the least important factors.  相似文献   
83.
The present study attempts to model the spatial variability of three groundwater qualitative parameters in Guilan Province, northern Iran, using artificial neural networks (ANNs) and support vector machines (SVMs). Data collected from 140 observation wells for the years 2002–2014 were used. Five variables, X and Y coordinates of the observation well, distance of the observation well from the shoreline, areal average 6-month rainfall depth, and groundwater level at the day of water quality sampling, were considered as primary input variables. In addition, nine qualitative variables were also considered as auxiliary input variables. Electrical conductivity (EC), sodium concentration (Na+), and sulfate concentration (SO4 2?) of the groundwater in the region were estimated using ANNs and SVMs with different input combinations. The results showed that both ANNs and SVMs work well when the only primary input variable is the well location. The ANN yielded an RMSE of 1.03 mEq/l for SO4 2?, 1.05 mEq/l for Na+, and 203.17 μS/cm for EC, using the X and Y coordinates of the observation wells in the study area. In the case of SVM, these values were, respectively, 0.87, 0.87, and 176.68. Considering the auxiliary input variables (pH, EC, and the concentrations of Na+, K+, Ca2+, Mg2+, Cl?, SO4 2?, and HCO3 ?) resulted in a significant decrease in the RMSE of both ANNs (0.22, 0.30, and 33.04) and SVMs (0.26, 0.34, and 36.23). Comparing these RMSE values with those of cokriging interpolation technique (0.59, 0.98, and 177.59) indicated that ANNs and SVMs produced more accurate estimates of the three qualitative parameters. The relative importance of auxiliary input variables was also determined using Gamma test. The output uncertainty of ANNs and SVMs were determined using p-factor and d-factor. The results showed that SVMs have less uncertainty than ANNs.  相似文献   
84.
85.
Alborz Mountains host Caspian Hyrcanian forest ecoregion along the northern slopes and forest steppe ecoregion in highlands. Hyrcanian forest covers the southeastern part of Caucasus biodiversity hotspot and is of great biogeographic importance. Altitudinal pattern and correlation between woody species biodiversity (DIV), forest structure ((stem density (DEN), mean basal area (MBA) and mean height class (MHC)) and disturbance (DIS) were explored along 2,400 m altitudinal gradient in Hyrcanian relict forest, Central Alborz Mountains. Vegetation changes from lowland forest (LoF) to mid- altitude forest (MiF) and montane forest (MoF) in this area. The altitudinal gradient was divided into twelve 200 m elevational belts. Point centered quarter method (PCQM) with 96 sampling points and 83 vegetation samples by plot method (PM) were used to record field data. Shannon-Wiener index and Pearson coefficient were used for diversity and correlation analysis. The results showed that DEN decreased linearly, MBA and MHC showed relatively hump shaped and DIS showed a reverse hump shaped pattern of change along altitudinal gradient. Woody species diversity decreased non-steadily from LoF to MoF. Transitional vegetations of Carpinus-Fagus and Fagus-Quercus represented higher diversity of woody taxa compared to adjacent homogenous communities. Significant correlation was observed between altitude and all parameters: DEN with MBA, DIS and DIV; MBA with DIS; MHC with DIS along with DIV; and DIS with DIV at the study area scale. Surprisingly,correlation between studied parameters differed within each vegetation type. Altitude probably acts as a proxy for human and environmental driving forces in this area. Stability of warm and wet condition, season length, soil depth along with forest accessibility probably influences the altitudinal pattern of the studied parameters. Disturbance affects forest structure and consequently diversity; especially in lowlands. The obtained results recommend using both forest biodiversity and mensuration data in management process of forest ecosystems.  相似文献   
86.
87.
The Cerchar test is one of the appropriate and routine tests for determining the rock abrasion; but as for the costs and pin wear measurement errors in laboratory procedures and lack of access to laboratory equipment, using of numerical modeling can lead to use of greater number of samples required during the course of mechanized excavation and reduce the costs and errors in the laboratory test. In this study, the Cerchar abrasivity test was modeled using PFC3D (Particle Flow Code in 3 Dimensions) software. In order to verify the simulation results, Cerchar laboratory test results obtained by Rostami (Rock Mech Rock Eng 47(5):1905–1919, 2014) were compared with the numerical modeling results. In modeling studies, the effects of some parameters such as apply load, test speed, pin hardness and scratching distance on pin wear were investigated. As a conclusion of the study, good agreement between modeling and experimental results was obtained for a given condition. As in the experiment with various loads in both laboratory tests and modeling, with increasing applied load the Cerchar abrasivity index also increased in the experiment with Rockwell hardness HRC (An abbreviation for Rockwell Hardness measured on the C scale. The Rockwell test determines the hardness by measuring the depth of penetration of an indenter under a large load compared to the penetration made by a preload, that on the C scale use from a indenter with 120° cone and 150 kgf load) 42.  相似文献   
88.
The interaction effects of different applied ratios of a hydrophilic polymer (Superab A200) (0, 0.2, 0.6% w/w) under various soil salinity levels (initial salinity, 4 and 8 ms/cm) were evaluated on available water content (AWC), biomass, and water use efficiency for corn grown in loamy sand and sandy clay loam soils. The results showed that the highest AWC was measured at the lowest soil salinity. The application of 0.6% w/w of the polymer at the lowest salinity level increased the AWC by 2.2 and 1.2 times greater than those of control in the loamy sand and sandy clay loam soils, respectively. The analysis of variance of data showed that the effect of salinity was significant on biomass and water use efficiency of corn in the loamy sand and sandy clay loam soils. The highest amounts of these traits were measured in soils with the lowest salinity level. Application of polymer at the rate of 0.6% in the loamy sand soil and at the rate of 0.2% in the sandy clay loam soil resulted in the highest aerial and root biomass and water use efficiency for corn. At these polymer rates the amounts of water use efficiency for corn were 2.6 and 1.7 times greater than those of control in the loamy sand and sandy clay loam soils, respectively. Thus, the use of hydrophilic polymer in soils especially in the sandy soils increases soil water holding capacity, yield, and water use efficiency of plant. On the other hand, decreases the negative effect of soil salinity on plant and helps for irrigation projects to succeed in arid and semi‐arid areas.  相似文献   
89.
Petroleum products spill and leakage have become two major environmental challenges in Iran. Sampling was performed in the petroleum reservoir waste water of Tehran and Kerman Provinces of Iran. Alkane degrading bacteria were isolated by enrichment in a Bushnel–Hass medium, with hexadecane as sole source of carbon and energy. The isolated strains were identified by amplification of 16S rDNA gene and sequencing. Specific primers were used for identification of alkane hydroxylase gene. Fifteen alkane degrading bacteria were isolated and 8 strains were selected as powerful degradative bacteria. These 8 strains relate to Rhodococcus jostii, Stenotrophomonas maltophilia, Achromobacter piechaudii, Tsukamurella tyrosinosolvens, Pseudomonas fluorescens, Rhodococcus erythropolis, Stenotrophomonas maltophilia, Pseudomonas aeruginosa genera. The optimum concentration of hexadecane that allowed high growth was 2.5%. Gas chromatography results show that all strains can degrade approximately half of hexadecane in one week of incubation. All of the strains have alkane hydroxylase gene which are important for biodegradation. As a result, this study indicates that there is a high diversity of degradative bacteria in petroleum reservoir waste water in Iran.  相似文献   
90.
Theoretical and Applied Climatology - It is very important to study the role of global warming on the variability of summer characteristics in arid and semi-arid climates such as Iran, because of...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号