首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   10篇
  国内免费   14篇
测绘学   9篇
大气科学   42篇
地球物理   41篇
地质学   74篇
海洋学   63篇
天文学   17篇
综合类   4篇
自然地理   5篇
  2022年   2篇
  2021年   3篇
  2020年   6篇
  2019年   3篇
  2018年   11篇
  2017年   12篇
  2016年   19篇
  2015年   17篇
  2014年   19篇
  2013年   25篇
  2012年   16篇
  2011年   24篇
  2010年   14篇
  2009年   19篇
  2008年   11篇
  2007年   9篇
  2006年   9篇
  2005年   10篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1988年   1篇
  1986年   1篇
排序方式: 共有255条查询结果,搜索用时 15 毫秒
31.
Abstract

River water temperature regimes are expected to change along with climate over the next decades. This work focuses on three important salmon rivers of eastern Canada, two of which warm up most summers to temperatures higher than the Atlantic salmon lethal limit (>28°C). Water temperature was monitored at 53 sites on the three basins during 2–18 summers, with about half of these sites either known or potential thermal refugia for salmon. Site-specific statistical models predicting water temperature, based on 10 different climate scenarios, were developed in order to assess how many of these sites will remain cool enough to serve as refugia in the future (2046–2065). The results indicate that, while 19 of the 23 identified refugia will persist, important increases in the occurrence and duration of temperature events in excess of 24°C and 28°C, respectively, in the mainstems of the rivers, will lead to higher demands for thermal refugia in the salmonid populations.
Editor Z.W. Kundzewicz; Associate editor T. Okruszko  相似文献   
32.
In a probabilistic analysis of rock slope stability, the Monte Carlo simulation technique has been widely used to evaluate the probability of slope failure. While the Monte Carlo simulation technique has many advantages, the technique requires complete information of the random variables in stability analysis; however, in practice, it is difficult to obtain complete information from a field investigation. The information on random variables is usually limited due to the restraints of sampling numbers. This is why approximation methods have been proposed for reliability analyses. Approximation methods, such as the first-order second-moment method and the point estimate method, require only the mean and standard deviation of the random variable; therefore, it is easy to utilize when the information is limited. Usually, a single closed form of the formula for the evaluation of the factor of safety is needed for an approximation method. However, the commonly used stability analysis method of wedge failure is complicated and cumbersome and does not provide a simple equation for the evaluation of the factor of safety. Consequently, the approximation method is not appropriate for wedge failure. In order to overcome this limitation, a simple equation, which is obtained from the maximum likelihood estimation method for wedge failure, is utilized to calculate the probability of failure. A simple equation for the direct estimation of the safety factors for wedge failure has been empirically derived from failed and stable cases of slope, using the maximum likelihood estimation method. The developed technique has been applied to a practical example, and the results from the developed technique were compared to the results from the Monte Carlo simulation technique.  相似文献   
33.
Satellite data obtained over synoptic data-sparse regions such as an ocean contribute toward improving the quality of the initial state of limited-area models. Background error covariances are crucial to the proper distribution of satellite-observed information in variational data assimilation. In the NMC (National Meteorological Center) method, background error covariances are underestimated over data-sparse regions such as an ocean because of small differences between different forecast times. Thus, it is necessary to reconstruct and tune the background error covariances so as to maximize the usefulness of the satellite data for the initial state of limited-area models, especially over an ocean where there is a lack of conventional data. In this study, we attempted to estimate background error covariances so as to provide adequate error statistics for data-sparse regions by using ensemble forecasts of optimal perturbations using bred vectors. The background error covariances estimated by the ensemble method reduced the overestimation of error amplitude obtained by the NMC method. By employing an appropriate horizontal length scale to exclude spurious correlations, the ensemble method produced better results than the NMC method in the assimilation of retrieved satellite data. Because the ensemble method distributes observed information over a limited local area, it would be more useful in the analysis of high-resolution satellite data. Accordingly, the performance of forecast models can be improved over the area where the satellite data are assimilated.  相似文献   
34.
J. Moon  S. Jeong 《Engineering Geology》2011,117(3-4):207-216
Current practice for estimating water inflow rate relies mostly on analytical solutions which assume a homogeneous, isotropic porous medium around a tunnel. Field measurements indicate that current engineering practice does not consistently make adequate estimate of ground-water flow into a tunnel during excavation due to various factors that analytical solutions do not properly take into account. Among the various factors affecting ground-water flow, the significance of a highly pervious feature located near the tunnel is discussed in this research. The highly pervious feature, which is located near an underground opening and connected to a large source of water, can provide a path for relatively high-head water to the joints intersecting the opening. This paper describes the influence of a highly pervious feature on the ground-water flow regime around a tunnel and the change of inflow rate as the tunnel approaches a highly pervious feature.  相似文献   
35.
This study presents an example of locating Cambrian–Ordovician boundary in the lower Paleozoic carbonate succession in Korea using carbon isotope stratigraphy. The Yeongweol Unit of the lower Paleozoic Joseon Supergroup comprises the Upper Cambrian Wagok Formation and the Lower Ordovician Mungok Formation in the Cambrian–Ordovician transition interval. Conventionally, the boundary was placed at the lithostratigraphic boundary between the two formations. This study reveals that the boundary is positioned in the basal part of the Mungok Formation based on the carbon isotope stratigraphy coupled with biostratigraphic information of conodont and trilobite faunas. The δ13C curve of the Lower Ordovician Mungok Formation shows a similar trend to that of the coeval stratigraphic interval of Argentine Precordillera (Buggisch et al., 2003), suggesting that the δ13C curve of the Mungok Formation reflects the Early Ordovician global carbon cycle.  相似文献   
36.
To distinguish true red tide water (particularly Cochlodinium polykrikoides blooms) from non-red tide water (false satellite high chlorophyll water) in the South Sea of Korea, we developed a systematic classification method using spectral information from MODIS level products and applied it to five different harmful algal bloom events. Red tide and nonred tide waters were classified based on four different criteria. The first step revealed that the radiance peaks of potential red tide water occurred at 555 and 678 nm. The second step separated optically different waters that were influenced by relatively low and high contributions of colored dissolved organic matter (CDOM) (including detritus) to chlorophyll. The third and fourth steps discriminated red tide water from non-red tide water based on the blue-to-green ratio in areas with lower and higher contributions of CDOM to chlorophyll, respectively. After applying the red tide classification (using the four criteria), the spectral response of the red tide water, which is influenced by pigment concentration, showed different slopes for the blue and green bands (lower slope at blue bands and higher slope at green bands). The opposite result was found for non-red tide water, due to decreasing phytoplankton absorption and increasing detritus/CDOM absorption at blue bands. The results were well matched with the discoloration of water (blue to dark red/brown) and delineated the areal coverage of C. polykrikoides blooms, revealing the nature of spatial and temporal variations in red tides. This simple spectral classification method led to increase user accuracy for C. polykrikoides and non-red tide blooms (>46% and >97%) and provided a more reliable and robust identification of red tides over a wide range of oceanic environments than was possible using chlorophyll a concentration, chlorophyll anomaly, fluorescence analysis, or proposed red tide detection algorithms.  相似文献   
37.
In this paper, we examined the detailed morphology of two strains of Prorocentrum isolated from the coastal waters of Zhejiang (Wenling area), China, and Masan Bay of Korea. A taxonomic comparison was made among strains on the basis of morphological and molecular data. The cellular dimensions of the Chinese Wenling strain (LAMB090508) and Korean strain (PDKS0206) were similar and the cells of both strains were of asymmetric and elongated shape. The posterior end of most cells was rounded. Megacytic zones of aged cells were broader with dense tiny knobs. The roundish nucleus was located in the posterior part of the cell. A few irregular shaped chloroplasts were distributed within the cell. The nucleotide similarity of the two strains, determined from the 5.8S rDNA-ITS sequences, was 99.83%. The comparative results of morphology and molecular analysis suggest that both strains isolated from China and Korea were the identical species, Prorocentrum donghaiense Lu.  相似文献   
38.
Both radiocarbon and optically stimulated luminescence (OSL) dating methods were applied to test their suitability for establishing a chronology of arid-zone lacustrine sediments using a 5.88-m-long core drilled from Lake Ulaan, southern Mongolia. Although the radiocarbon and OSL ages agree in some samples, the radiocarbon ages are older than the corresponding OSL ages at the 550-cm depth horizon (late Pleistocene) and in the 100–300-cm interval (early to late Holocene). In the early to late Holocene, radiocarbon ages are consistently older than OSL ages by 4,100–5,800 years, and in the late Pleistocene by 2,700–3,000 years. Grain-size analysis of early to late Holocene sediments and one late Pleistocene sediment sample (550-cm depth) indicates that eolian processes were the dominant sediment-transport mechanism. Also, two late Pleistocene sediments samples (from 400- to 500-cm depths) are interpreted to have been deposited by both eolian and glaciofluvial processes. Accordingly, the radiocarbon ages that were older than the corresponding OSL ages during the Holocene seem to have been a consequence of the influx of 14C-deficient carbon delivered from adjacent soils and Paleozoic carbonate rocks by the westerly winds, a process that is also active today. In addition to the input of old reworked carbon by eolian processes, the late Pleistocene sediments were also influenced by old carbon delivered by deglacial meltwater. The results of this study suggest that when eolian sediment transport is suspected, especially in lakes of arid environments, the OSL dating method is superior to the radiocarbon dating method, as it eliminates a common ‘old-carbon’ error problem.  相似文献   
39.
There is a great hiatus between Ordovician and Carboniferous strata in the Northeast China and Korean Peninsula. In order to understand geology and tectonic evolution, and to find out the similarities and differences in both regions, two sections in the Western Hill near Beijing in NE China and several sections in the Korean Peninsula were selected to examine their geologic boundaries between Lower and Upper Paleozoic strata to compare their characteristic features. At four sites in the two sections in the Western Hill near Beijing were examined their contact relations. The Hui Yu section is the same horizon where one site is top of a quarry hill and the other of down hill. Mid-Carboniferous Qingshuijian Formation rests on the Ordovician Majiagou Formation. Limestone beds are more commonly intercalated with shale and sandstone at site 2 of the Hui Yu section, while at site 1, conglomerate beds are dominant. Site 1 of the Se Shu Fen section shows eroded and concealed karst topography and conglomerate beds are intercalated within shale beds. Silurian and Devonian strata are absent in these areas. In the Korean Peninsula, most O-C contacts occur between Ordovician limestone formation and Carboniferous strata, although Silurian strata occur beneath the Carboniferous strata in the Jeongseon area and Pyeongnam Basin. Most contact relations are parallel unconformity and angular unconformity is rarely seen. The O-C relations in both regions are similar to each other, and these indicate that the Korean Peninsula was located near or belonged to the Sino-Korean paraplatform during Paleozoic time.  相似文献   
40.
Seasonal variations of water chemistry occurred in acid mine drainage receiving mine and leachate water. Sulfate and metal concentrations were low in winter but high in spring and summer. Mine waters were highly acidic (up to pH 3.4) in nature with high concentrations of manganese, copper and zinc but high electrical conductivity and sulfate in leachate. The blue and brownish yellow precipitates were formed under different chemical environments of acid mine drainage. Brownish yellow (Munsell color 7.5YR 8/12), blue (Munsell color 2.5B 9/7) and light blue (Munsell color 2.5B 9/3) precipitates deposited on the stream bottom receiving acid mine water. The brownish yellow precipitates formed in the acid mine water, whereas the blue and light blue precipitates formed in the leachate water. The brownish yellow precipitates consisted mainly of ferrihydrite, whereas the blue and light blue precipitates consisted of glaucocerinite and/or woodwardite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号