首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   368篇
  免费   23篇
  国内免费   2篇
测绘学   14篇
大气科学   21篇
地球物理   114篇
地质学   141篇
海洋学   36篇
天文学   51篇
综合类   2篇
自然地理   14篇
  2023年   1篇
  2022年   3篇
  2021年   8篇
  2020年   12篇
  2019年   9篇
  2018年   13篇
  2017年   12篇
  2016年   22篇
  2015年   21篇
  2014年   23篇
  2013年   26篇
  2012年   19篇
  2011年   21篇
  2010年   18篇
  2009年   27篇
  2008年   18篇
  2007年   27篇
  2006年   18篇
  2005年   12篇
  2004年   11篇
  2003年   5篇
  2002年   11篇
  2001年   4篇
  2000年   3篇
  1999年   5篇
  1998年   6篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   6篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1974年   3篇
  1946年   1篇
排序方式: 共有393条查询结果,搜索用时 0 毫秒
391.
392.
Observations of the large two-ribbon flare on 7 November 2004 made using SOHO and TRACE data are interpreted in terms of a three-dimensional magnetic field model. Photospheric flux evolution indicates that ?1.4×1043 Mx2 of magnetic helicity was injected into the active region during the 40-hour buildup prior to the flare. The magnetic model places a lower bound of 8×1031 ergs on the energy stored by this motion. It predicts that 5×1021 Mx of flux would need to be reconnected during the flare to release the stored energy. This total reconnection compares favorably with the flux swept up by the flare ribbons, which we measure using high-time-cadence TRACE images in 1?600 Å. Reconnection in the model must occur in a specific sequence that would produce a twisted flux rope containing significantly less flux and helicity (1021 Mx and ?3×1042 Mx2, respectively) than the active region as a whole. The predicted flux compares favorably with values inferred from the magnetic cloud observed by Wind. This combined analysis yields the first quantitative picture of the flux processed through a two-ribbon flare and coronal mass ejection.  相似文献   
393.
We have investigated the thermodynamics of mixing between aragonite (orthorhombic CaCO3) and strontianite (SrCO3). In agreement with experiment, our simulations predict that there is a miscibility gap between the two solids at ambient conditions. All SrxCa1−xCO3 solids with compositions 0.12 < x < 0.87 are metastable with respect to separation into a Ca-rich and a Sr-rich phase. The concentration of Sr in coral aragonites (x ∼ 0.01) lies in the miscibility region of the phase diagram, and therefore formation of separated Sr-rich phases in coral aragonites is not thermodynamically favorable. The miscibility gap disappears at around 380 K. The enthalpy of mixing, which is positive and nearly symmetric with respect to x = 0.5, is the dominant contribution to the excess free energy, while the vibrational and configurational entropic contributions are small and of opposite sign. We provide a detailed comparison of our simulation results with available experimental data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号