首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23255篇
  免费   204篇
  国内免费   148篇
测绘学   357篇
大气科学   1221篇
地球物理   4459篇
地质学   9092篇
海洋学   2244篇
天文学   5339篇
综合类   52篇
自然地理   843篇
  2022年   268篇
  2021年   437篇
  2020年   400篇
  2019年   471篇
  2018年   967篇
  2017年   882篇
  2016年   897篇
  2015年   384篇
  2014年   784篇
  2013年   1319篇
  2012年   917篇
  2011年   1115篇
  2010年   1072篇
  2009年   1226篇
  2008年   1051篇
  2007年   1236篇
  2006年   1066篇
  2005年   573篇
  2004年   546篇
  2003年   543篇
  2002年   570篇
  2001年   516篇
  2000年   414篇
  1999年   336篇
  1998年   324篇
  1997年   330篇
  1996年   255篇
  1995年   263篇
  1994年   237篇
  1993年   183篇
  1992年   209篇
  1991年   181篇
  1990年   195篇
  1989年   188篇
  1988年   156篇
  1987年   182篇
  1986年   170篇
  1985年   205篇
  1984年   198篇
  1983年   197篇
  1982年   188篇
  1981年   172篇
  1980年   162篇
  1979年   182篇
  1978年   158篇
  1977年   142篇
  1976年   133篇
  1975年   136篇
  1974年   125篇
  1973年   165篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
TThe Roper Group is a cyclic, predominantly marine, siliciclastic succession of Calymmian (Early Mesoproterozoic) age. It has a distribution of at least 145 000 km2 and a maximum known thickness of ~5000 m. In the Roper River district the middle part of the Roper Group (~1300 m thick) is characterised by the cyclical alternation of mudstone and sandstone units, and can be divided into six third‐order depositional sequences. A typical sequence is broadly progradational in aspect, and comprises a lower, mudstone‐rich, storm‐dominated shelf succession (up to 330 m thick), and a sequence‐capping unit dominated by tidal‐platform cross‐bedded sandstone (up to 80 m thick); both are interpreted as highstand systems tracts. Transgressive strata are poorly represented but where present are characterised by paralic to fluvial redbed assemblages that include ooidal ironstone. Roper Group sequences lack a distinct condensed section and sequence boundaries are mostly conformable. Erosional contacts separate mud‐rich shelf facies from sequence‐capping sandstones. We infer that these erosion surfaces were generated by episodic flexural tectonism, which also generated the accommodation and sediment supply for Roper sequences.  相似文献   
952.
Stress mapping is a numerical modelling technique used to determine the distribution and relative magnitude of stress during deformation in a mineralised terrane. It is based on the general principle that fluid flow in the Earth's crust is primarily related to pressure gradients. It is best applied to epigenetic hydrothermal mineral deposits, where fluid flow and fluid flux are enhanced in dilational sections of structures and in sites of enhanced rock permeability due to high fracture density. These are defined by sites of low minimum principal stress (σ3). Most stress mapping is carried out in two dimensions in plan view using geological maps. This is suitable for terranes with steeply dipping lithostratigraphy and structures in which the distribution of mineral deposits is largely controlled by fault structures portrayed on the maps. However, for terranes with gently dipping sequences and structures, and for situations where deposits are sited in and near the hinges of complex fold structures, stress mapping in cross‐section is preferable. The effectiveness of stress mapping is maximised if mineralisation was late in the evolutionary history of the host terrane, and hence the structural geometry of the terrane and contained deposits were essentially that expressed today. The orientation of syn‐mineralisation far‐field stresses must also be inferred. Two examples of orogenic gold deposits, which meet the above criteria, are used to illustrate the potential of stress mapping in cross‐section. Sunrise Dam, located in the Archaean Yilgarn Craton, is a lode‐gold deposit sited in a thrust‐fold belt. Stress mapping illustrates the heterogeneity of stress distribution in the complex structural geometry of the deposit, and predicts the preferential siting of ore zones around the intersections of more steeply dipping, linking thrusts and banded iron‐formation units, and below the controlling more gently dipping basal thrust, the Sunrise Shear. The Howley Anticline in the Pine Creek block hosts several Palaeoproterozoic gold deposits, sited in complex anticlinal structures in greywacke sequences. Stress mapping indicates that gold ores should develop in the hinge zones of symmetrical anticlines, in the hinge zones and more steeply dipping to overturned limbs of asymmetric anticlines, and in and around thrusts in both anticlines and parasitic synclines. The strong correlation between the predictions of the stress mapping, based on the distribution of low σ3, and the location of gold ores emphasises the potential of stress mapping in cross‐section, not only as an exploration tool for the discovery of additional resources or deposits, but also as a test of geological models. Knowledge of the potential siting of gold ores and their probable orientations also provides a guide to drilling strategies in both mine‐ and regional‐scale exploration.  相似文献   
953.
This paper describes a soil‐structure coupling method to simulate blast loading in soil and structure response. For the last decade, simulation of soil behavior under blast loading and its interaction with semi buried structure in soil becomes the focus of computational engineering in civil and mechanical engineering communities. In current design practice, soil‐structure interaction analysis often assumes linear elastic properties of the soil and uses small displacement theory. However, there are numerous problems, which require a more advanced approach that account for soil‐structure interaction and appropriate constitutive models for soil. In simplified approaches, the effect of soil on structure is considered using spring‐dashpot‐mass system, and the blast loading is modeled using linearly decaying pressure–time history based on equivalent trinitrotoluene and standoff distance, using ConWep, a computer program based on semi‐empirical equations. This strategy is very efficient from a CPU time computing point of view but may not provide accurate results for the dynamic response of the structure, because of its significant limitations, mainly when soil behavior is strongly nonlinear and when the buried charge is close to the structure. In this paper, both soil and explosive are modeled using solid elements with a constitutive material law for soil, and a Jones–Wilkins–Lee equation of state for explosive. One of the problems we have encountered when solving fluid structure interaction problems is the high mesh distortion at the contact interface because of high fluid nodal displacements and velocities. Similar problems have been encountered in soil structure interaction problems. To prevent high mesh distortion for soil, a new coupling algorithm is performed at the soil structure interface for structure loading. The coupling method is commonly used for fluid structure interaction problems in automotive and aerospace industry for fuel sloshing tank, and bird impact problems, but rarely used for soil structure interaction problems, where Lagrangian contact type algorithms are still dominant. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
954.
通过对岩浆冷却过程的数字模拟研究,揭示出岩浆在冷却成矿过程中的温度分布和变化规律及影响因素.在此基础上,进一步应用高精度的温龄计组合来限定岩浆成矿体系的热演化和剥露历史,精确地计算出岩浆的初始侵位时间和深度、矿物结晶时间、冷却速率、冷却和暴露地表时间,以及剥露和剥蚀速率等重要参数,并将模拟结果应用于斑岩铜矿床的成矿研究中.研究表明,将精确的年龄测试手段与计算机模拟技术相结合,可为定量研究岩浆矿床的热演化和剥露史、深入了解矿床的成因机制提供一种有效方法.  相似文献   
955.
A comparative analysis of oscillatory spectra based on 66 time series for 14 active regions observed in 2001 shows that, although the chromospheric and photospheric oscillations in the Evershed flow zone possess many common features, there is no firm evidence that the direct and inverse flows have the same physical origin. The interactions between the various oscillation modes and stationary flows results in a complex pattern of wave motions in a sunspot. We studied the Doppler-velocity variations in the sunspot NOAA 0051 during its motion over the disk. The spatial-temporal distribution of the line-of-sight velocity in the chromospheric umbra displays a chevron structure, clearly indicating the presence of propagating waves. These waves move from the center of the umbra to outer regions with a phase speed of 45–60 km/s, a period of 2.8 min, and a measured Doppler speed of 2 km/s. The amplitude of these oscillations decreases abruptly at the boundary between the umbra and penumbra, and the observed waves are not directly related to propagating penumbral waves. Furthermore, the observed pattern of the photospheric velocities shows periodic motions (with a period of 5 min) directed from the inner boundary of the penumbra and superpenumbra toward the line of maximum Evershed velocity.  相似文献   
956.
Using observational data obtained with the Yohkoh, SOHO, and TRACE satellites, it is shown that the three-dimensional structure of the large solar flare of July 14, 2000 was determined by the topology of the large-scale magnetic field of the active region giving rise to the flare. The locations and shapes of chromospheric ribbons and brightness centers on these ribbons are explained. The observed behavior of the flare is attributed to rapid magnetic reconnection in the corona. The electric field accelerating particles in the reconnecting current sheets is estimated.  相似文献   
957.
The geology and typification of volcanogenic massive sulfide (VMS) deposits of the Southern Urals are considered. The mineralogical-geochemical types of these deposits correlate with the composition of the underlying igneous rocks: Ni-Co-Cu deposits correlatedwith serpentinites (Ivanovka type); (Co)-Cu deposits, with basalts (Dombarovka type); Cu-Zn deposits, with basalt-rhyolite and basalt-andesite-rhyolite complexes (Ural type); and Au-Ba-Pb-Zn-Cu deposits, with basalt-andesite-rhyolite complexes with predominance of andesitic and felsic volcanics (Baimak type). The Ural-type deposits are subdivided into three subtypes: I, underlain by basalts (Zn-Cu deposits); II, hosted in felsic volcanic rocks of bimodal complexes (Cu-Zn deposits); and III, hosted in felsic volcanic rocks of continuously differentiated complexes (Zn-Cu deposits with Ba, Pb, and As). The above types and subtypes bearing local names are compared with global types of VMS deposits (MAR, Cyprus, Noranda, and Kuroko), to which they are close but not identical.  相似文献   
958.
The paper presents new determinations of the U-Pb zircon age of high-Al chromitite from dunite of the mantle section of the Voikar-Synya massif at the Kershor site in the boundary zone with rocks of the dunite-wehrlite-clinopyroxenite complex. The high-Cr chromitite from dunite in the central part of the same massif contains zircon dated at ca. 0.6 Ga [10]. It is suggested that Paleoproterozoic (2.0?1.9 Ga) zircons from chromitites of the mantle section near the petrological Moho boundary were formed in the course of partial melting of peridotites and/or their interaction with migrating MORB-type melts. The occurrence of Vendian and Paleoproterozoic zircons in chromitites from different parts of the mantle section, as well as previously published petrological, geochemical, and geological data [2, 11, 22] allow us to suggest a complex multistage evolution of the mantle section in ophiolites. The arguments stated below show that chromitites and host dunites could have been formed at different times and were probably related to different processes. Thus, not only various complexes of the pre-Paleozoic oceanic crust reworked in the suprasubduction setting differ in age, but also the mantle rock of similar petrography, vary in the time of their formation.  相似文献   
959.
Doklady Earth Sciences - In the north of the shallow East Siberian Arctic Shelf (the Laptev and East Siberian seas), based on CDP (common depth point) seismic data for 71 lines with total length of...  相似文献   
960.
Doklady Earth Sciences - Using the remote sensing data obtained by the Sentinel-1A and Sentinel-1B satellites in the years 2016–2021, a local accumulation of oil slicks in the Barents Sea in...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号