首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1536篇
  免费   69篇
  国内免费   63篇
测绘学   55篇
大气科学   52篇
地球物理   338篇
地质学   956篇
海洋学   102篇
天文学   82篇
综合类   11篇
自然地理   72篇
  2023年   4篇
  2022年   34篇
  2021年   40篇
  2020年   60篇
  2019年   36篇
  2018年   137篇
  2017年   121篇
  2016年   134篇
  2015年   72篇
  2014年   115篇
  2013年   186篇
  2012年   65篇
  2011年   94篇
  2010年   71篇
  2009年   73篇
  2008年   53篇
  2007年   33篇
  2006年   36篇
  2005年   27篇
  2004年   27篇
  2003年   23篇
  2002年   35篇
  2001年   16篇
  2000年   16篇
  1999年   9篇
  1998年   11篇
  1997年   16篇
  1996年   4篇
  1995年   7篇
  1994年   6篇
  1993年   5篇
  1992年   7篇
  1991年   6篇
  1990年   6篇
  1988年   3篇
  1987年   7篇
  1986年   7篇
  1985年   7篇
  1984年   6篇
  1983年   4篇
  1982年   9篇
  1981年   6篇
  1980年   2篇
  1979年   10篇
  1978年   3篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1971年   2篇
排序方式: 共有1668条查询结果,搜索用时 46 毫秒
991.
Wind action is the most dominant agent for erosion and deposition in the vast Western Desert of Egypt. Analysis of wind data from seven meteorological stations distributed along the Western Desert reveals that this desert is characterized by high-energy wind environments along the northern and southern edges and low-energy wind environments throughout the rest of the desert. Accordingly, sand drift potential follows the pattern of wind energy. Maximum sand drift potential was observed at the southern edge (571 vector units, which equals 40 m3/m width/year). Sand drift direction was observed towards the southeast except at the southern part of the desert where the trend of sand movement was towards southwest. The major dune type recognized on satellite images was the simple linear type. Linear dunes are generally associated with bimodal wind regime. Rates of sand drift potential and sand dune migration were greatest at East of Owinate region at the extreme southern part of the desert. Measurements of crescentic sand dune advance from two satellite images reveal a maximum advance rate of about 9 m/year at the southern part of the desert. Dune movement creates potential hazard to the infrastructures in this open desert.  相似文献   
992.
The Hammamat molasse sediments of the Eastern Desert of Egypt were deposited in isolated basins formed during an initial stage of orogen parallel N–S extension (650–580 Ma) in the Neoproterozoic time. Supply of sediments to the molasse basins began after the eruption of Dokhan volcanics (602–593 Ma), exhumation of core complexes (650–550 Ma), and intrusion of late tectonic granites (610–550 Ma). The late Neoproterozoic structures in the molasse sediments include: (1) NNW-directed thrusts due to NNW–SSE shortening (650–640 Ma), indicated by the presence of NE-, ENE-, and WSW-trending folds and NNW-directed thrusts. (2) SW- and NE-directed thrusts due to ENE–WSW constriction during oblique convergence and arc accretion at around 640–620 Ma. Many of the map- and mesoscopic-scale NW-trending folds in the core complexes, the molasse sediments, and the Neoproterozoic nappes in the Eastern Desert are related to this event. Sinistral shearing along the Najd Fault System (650–540 Ma) resulted in the development of subvertical foliation, subhorizontal stretching lineation, and NW-trending tight folds overprinting earlier folds. Stretched pebbles are oriented NW–SE and WNW–ESE in the molasse basins localized within the Najd Fault System, and NE–SW in the basins outside the influence zone of this NW-trending fault system. Strain estimated using pebbles from nine molasse basins indicate that the amount of strain differs from one basin to another and from one place to another within the same basin. Weak tectonic strain (Rs = 2.16–2.24) is obtained from post-orogenic basins; moderate strains are reported from foreland basins (Rs = 2.37–3.18), whereas moderate to high tectonic strains are recorded from the intermontane basins (Rs = 2.40–4.36). The obtained tectonic strain and K values indicate that the flattening strain prevails in the post-orogenic and foreland basins, whereas as both constrictional and flattening strains are recorded in intermontane basins. Strain variation from one basin to another and within the individual basin is attributed to presence of thrust and sinistral shear zones. Away from the deformed zones, the pebbles show no significant stretching. Two phases of thrusting and an episode of transpressional sinistral shearing are the latest structure features of the East African orogeny in the Arabian–Nubian Shield.  相似文献   
993.
The littoral fringe ranging between the capes of Bizerte and Ras Ettarf (north-eastern of Tunisia) represents an unstable and complex system of the Tunisian littoral. The instability of this zone is dependent, on one hand, on natural phenomena contributing to the destabilization of certain sectors to which are added the induced effects of anthropic factors on the other hand. This study was carried out from grain size analysis and a simulation of swell plans. This led the authors to highlight the increasing grain size classification from the zones of the Capes towards the sandy low coasts and to quantify the moved volumes under the effect of the dominant swells in order to simulate the fattening and erosion zones in this sector. A littoral transit of direction north–south is able to transport 45,000 m3/year of sediment which are participating in the fattening of the beach of Sidi Salem; 6,000 m3/year of sandy sediments are directed towards the beach of R'mel and 12,000 m3/year are participating in the fattening of the beaches of Chatt Mami (Ras Jebel) and Lahmmari (Raf Raf).  相似文献   
994.
A near-surface seismic refraction survey was conducted at a new mining area located in southeast Cairo, Egypt, to explore the subsurface clay layer for future economic use in mining and cement industry. The purpose of the survey has been to provide geological and geophysical information because no borehole was existent in the area under investigation. The aim of study had been to explain the main characteristics of the subsurface layers. For this purpose, a new technique has been used to acquire and process the data. This technique provides critical information to determine the depth of the subsurface layers, as well as morphology, stratigraphy, and potential locations of the clay layer for future economic use. The thickness and general shape of the clay layer in the whole area were determined and are illustrated in maps.  相似文献   
995.
This study aims to trace changes in the dry spells over Peninsular Malaysia based on the daily rainfall data from 36 selected rainfall stations which include four subregions, namely northwest, west, southwest, and east for the periods of 1975 to 2004. Six dry spell indices comprising of the main characteristics of dry spells, the persistency of dry events, and the frequency of the short and long duration of dry spells will be used to identify whether or not these indices have increased or decreased over Peninsular Malaysia during the monsoon seasons. The findings of this study indicate that the northwestern areas of the Peninsular could be considered as the driest area since almost all the indices of dry spells over these areas are higher than in the other regions during the northeast (NE) monsoon. Based on the individual and the field significant trends, the results of the Mann–Kendall test indicate that as the total number of dry days, the maximum duration, the mean, and the persistency of dry days are decreased, the trend of the frequency of long dry spells of at least 4 days is also found to decrease in almost all the stations over the Peninsula; however, an increasing trend is observed in the frequency of short spells in these stations during the NE monsoon season. On the other hand, during the southwest monsoon, a positive trend is observed in the characteristics of dry spells including the persistency of two dry days in many stations over the Peninsula. The frequency of longer dry periods exhibits a decreasing trend in most stations over the western areas during both monsoon seasons for the periods of 1975 to 2004.  相似文献   
996.
The geostrophic Ekman boundary layer for large Rossby number (Ro) has been investigated by exploring the role played by the mesolayer (intermediate layer) lying between the traditional inner and outer layers. It is shown that the velocity and Reynolds shear stress components in the inner layer (including the overlap region) are universal relations, explicitly independent of surface roughness. This universality of predictions has been supported by observations from experiment, field and direct numerical simulation (DNS) data for fully smooth, transitionally rough and fully rough surfaces. The maxima of Reynolds shear stresses have been shown to be located in the mesolayer of the Ekman boundary layer, whose scale corresponds to the inverse square root of the friction Rossby number. The composite wall-wake universal relations for geostrophic velocity profiles have been proposed, and the two wake functions of the outer layer have been estimated by an eddy viscosity closure model. The geostrophic drag and cross-isobaric angle predictions yield universal relations, which are also supported by extensive field, laboratory and DNS data. The proposed predictions for the geostrophic drag and the cross-isobaric angle compare well with data for Rossby number Ro ≥ 105. The data show low Rossby number effects for Ro < 105 and higher-order effects due to the mesolayer compare well with the data for Ro ≥ 103.  相似文献   
997.
The frequency analysis of many log data permits to verify that their stochastic component show ‘power-law-type’ spectral densities, characteristic of 1/f noise. They can be modelled by fractional Brownian motions. Continuous Wavelet Transformation (CWT) provides us with very efficient methods to determine the local spectral exponents of these scaling laws. These new attributes are related to the local fractality of these signals. We first present some theoretical results and an application to a fractional Brownian motion. The second application concerns a dataset recorded in the MAR203 borehole. We show that clustering of these new pseudo-logs leads to a good resolution between different lithofacies. To cite this article: N. Zaourar et al., C. R. Geoscience 338 (2006).  相似文献   
998.
This paper covers the detailed version of the potential raw material deposits at Darukhula and the adjacent areas of Nizampur, the manufacturing of high-strength Portland cement samples from the same material and comparison of the physical and chemical parameters for resulting cement with British and Pakistan standard specifications, which include compressive strength, setting time, consistency, lechatelier expansion, Blaine and insoluble residue. It was found that the raw material available in the study area meets the standard specifications and the area is feasible for the cement plant installation. The area can provide raw material which is quite sufficient for the running of a cement plant.  相似文献   
999.
We conduct shear wave splitting measurements on waveform data from the Hi-net and the broadband F-net seismic stations in Kanto and SW Japan generated by shallow and intermediate-depth earthquakes occurring in the subducting Philippine Sea and Pacific slabs. We obtain 1115 shear wave splitting parameter pairs. The results are divided into those from the shallow (depth < 50 km) and the deep (depth > 50 km) events. The deep events beneath Kanto are further divided into PHS1 and PHS2 (upper and lower planes of the double seismic zone in the Philippine Sea slab, respectively), PAC1 and PAC2 (western and eastern Pacific slab, respectively) events. The results from the shallow events represent the crustal anisotropy, and their fast directions are more or less aligned in the σHmax directions, implying that the anisotropy is produced by the alignment of the vertical cracks in the crust induced by the compressive stresses. In Kanto, Kii Peninsula and Kyushu regions, the results from the deep events suggest a contribution from the mantle wedge anisotropy. Events from all groups beneath Kanto show NW, NE and EW fast directions. This complex pattern seems to be produced by the corner flows induced by both the WNW PAC plate subduction and the oblique NNW PHS slab subduction with the associated olivine lattice-preferred orientations (LPOs), and the anisotropy frozen in the PHS slab. The deep events beneath Kii Peninsula show NE and NW fast directions and may be produced by the corner flow produced by the NNW PHS slab subduction with the associated olivine LPOs. The NE directions might also be produced by the segregated melts in the thin layers parallel to the PHS slab subduction. The deep events beneath N Kyushu show NNW fast directions, which may result from the southeastward flow in the upper mantle inferred from the stresses in the upper plate. Results from the deep events beneath middle-south Kyushu show dominantly E–W fast directions, in both the fore- and back-arcs. They may be produced by the corner flow of the westward PHS slab subduction with the olivine LPOs. Because the source regions with multiple fast directions are not resolved in this study, further detailed analyses of shear wave splitting are necessary for a better understanding of the stress state, the induced mantle flow, and the melt-segregation processes.  相似文献   
1000.
In this paper we document widespread coeval felsic-mafic magma interaction and progressive hybridization near Gurgunta in the northern part of Eastern Dharwar Craton (EDC) where mafic magma pulses have injected into a 2.5 Ga granite pluton. The pluton contains voluminous pink porphyritic facies with minor equigranular grey facies. The mafic body shows compositional variation from diorite to meladiorite with hornblende as the chief mafic mineral with lesser clinopyroxene and biotite. The observed variation on binary diagrams suggests that granite was evolved by fractional crystallization. Chemical characteristics such as higher Al2O3 and moderate to high CaO, Mg#, Ni, Cr, Co and V are interpreted by slab-melting. Mafic bodies show lower SiO2, Na2O and K2O; but higher CaO, Mg#, FeO, Cr, Ni and V; higher LREE with moderate to higher HREE which suggest their derivation from mantle. A major active shear zone has played an important role at the time of synplutonic mafic injection and hybridization process. Field evidences suggest that the synplutonic mafic body has injected into the crystallizing felsic magma chamber in successive stages. The first stage injection has resulted in extensive mixing and hybridization due to the liquidus state of resident felsic magma to which hot mafic magma was injected. However, progressive mixing produced heterogeneity as the xenocrysts started mechanically dispersed into hybrid magma. The second stage injection, after a time gap, encountered colder and viscous hybrid magma in the magma chamber, which inhibited free injection. As a consequence, the mafic magma spread into magma chamber as flows, producing massive mafic bodies. However, with the continued mafic pulses and the heat gradient, the viscosity contrasts of mafic magma and felsic magma were again lowered resulting in second stage mixing. This episode was followed by mingling when the granite was almost crystallized, but still viscous enough to accommodate lamellar and ribbon like mafic penetrations to produce mingling. The successive mixing and mingling processes account for the observed heterogeneity in the granite pluton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号