首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   788篇
  免费   64篇
测绘学   18篇
大气科学   66篇
地球物理   265篇
地质学   297篇
海洋学   27篇
天文学   113篇
综合类   10篇
自然地理   56篇
  2024年   2篇
  2023年   7篇
  2022年   9篇
  2021年   17篇
  2020年   23篇
  2019年   22篇
  2018年   53篇
  2017年   59篇
  2016年   83篇
  2015年   68篇
  2014年   59篇
  2013年   64篇
  2012年   39篇
  2011年   41篇
  2010年   35篇
  2009年   37篇
  2008年   25篇
  2007年   31篇
  2006年   31篇
  2005年   16篇
  2004年   12篇
  2003年   11篇
  2002年   12篇
  2001年   4篇
  2000年   10篇
  1999年   6篇
  1998年   11篇
  1997年   3篇
  1996年   10篇
  1995年   7篇
  1994年   3篇
  1993年   4篇
  1991年   5篇
  1990年   2篇
  1988年   2篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   3篇
  1971年   2篇
  1970年   1篇
  1969年   2篇
排序方式: 共有852条查询结果,搜索用时 15 毫秒
101.
Precise positioning requires an accurate a priori troposphere model to enhance the solution quality. Several empirical models are available, but they may not properly characterize the state of troposphere, especially in severe weather conditions. Another possible solution is to use regional troposphere models based on real-time or near-real time measurements. In this study, we present the total refractivity and zenith total delay (ZTD) models based on a numerical weather prediction (NWP) model, Global Navigation Satellite System (GNSS) data and ground-based meteorological observations. We reconstruct the total refractivity profiles over the western part of Switzerland and the total refractivity profiles as well as ZTDs over Poland using the least-squares collocation software COMEDIE (Collocation of Meteorological Data for Interpretation and Estimation of Tropospheric Pathdelays) developed at ETH Zürich. In these two case studies, profiles of the total refractivity and ZTDs are calculated from different data sets. For Switzerland, the data set with the best agreement with the reference radiosonde (RS) measurements is the combination of ground-based meteorological observations and GNSS ZTDs. Introducing the horizontal gradients does not improve the vertical interpolation, and results in slightly larger biases and standard deviations. For Poland, the data set based on meteorological parameters from the NWP Weather Research and Forecasting (WRF) model and from a combination of the NWP model and GNSS ZTDs shows the best agreement with the reference RS data. In terms of ZTD, the combined NWP-GNSS observations and GNSS-only data set exhibit the best accuracy with an average bias (from all stations) of 3.7 mm and average standard deviations of 17.0 mm w.r.t. the reference GNSS stations.  相似文献   
102.
GPS Solutions - We present the methodology and results of GPS/GLONASS integration in network code differential positioning for regional coverage across Poland using single frequency. Previous...  相似文献   
103.
The development and application of an algorithm to compute Köppen‐Geiger climate classifications from the Coupled Model Intercomparison Project (CMIP) and Paleo Model Intercomparison Project (PMIP) climate model simulation data is described in this study. The classification algorithm was applied to data from the PMIP III paleoclimate experiments for the Last Glacial Maximum, 21k years before present (yBP), Mid‐Holocene (6k yBP) and the Pre‐Industrial (0k yBP, control run) time slices. To infer detailed classification maps, the simulation datasets were interpolated to a higher resolution. The classification method presented is based on the application of Open Source Software, and the implementation is described with attention to detail. The source code and the exact input data sets as well as the resulting data sets are provided to enable the application of the presented approach.  相似文献   
104.
Geomorphological diversity is part of geodiversity. Study and evaluation of geodiversity, including geomorphological diversity, is often conducted in uplands and mountains, despite the fact that lowland areas are of equal importance. This paper evaluates geomorphological diversity in a small area of the Polish Lowland, using a variety of methods that have been applied in recent times for evaluating geodiversity, and presents the results on maps. By comparing these maps and analyzing the correlation coefficients of the results obtained, it was possible to identify the two methods that were best suited to indicating areas with the greatest geomorphological diversity in the lowlands. These two methods are least affected by the choice of elementary fields and data classification methods applied. The study identified the two areas with the greatest relief diversity and showed that they distinctly differ from one another. They demonstrate the major influence of processes, not only on the topographic parameters and landform types, but above all on identifying and defining total geomorphological diversity. These methods, which can be used to identify the areas with the greatest total geomorphological diversity, could readily be used in applied studies relating to abiotic ecosystem services and landscape management.  相似文献   
105.
Western Poland is located in the central European climatic transition zone, which separates the mild and humid Atlantic climate of Western Europe and the East European continental climate. This region is sensitive to lateral shifts of the European climate zones and is particularly suitable for reconstructing Holocene climate variability. This paper presents detailed analyses of the sedimentary record from Lake Strzeszyńskie since the Late Pleistocene. These include smear-slide and thin-section observations, X-ray fluorescence core scanning, magnetic susceptibility measurements, pollen analyses, and radiocarbon dating. The sediment record reveals three distinct sedimentary units consisting of: (1) an alternation of sand layers and laminated silt and clay deposits accumulated prior to 14,600 cal yr BP; (2) faintly laminated calcareous sediments intercalated with organic matter-rich layers deposited between 14,600 and 10,200 cal yr BP; and (3) massive calcareous mud deposited after 10,200 cal yr BP. The Holocene period is marked by nine phases of organic-rich sedimentation and enhanced Fe deposition, which occurred at ca. 10.1, 9.3, 6.4–6.1, 5.5–5.1, 4.7–4.5, 2.7–2.4, 1.3–1.2, 0.8–0.6, 0.4–0.2 kyr cal BP. These phases are associated with high lake levels and correspond with wet periods recognized in several other records from Poland and central Europe. These phases partly coincide with North Atlantic cold periods, which may suggest that high lake levels are triggered by an ocean-continent linking mechanism.  相似文献   
106.
Maize is grown by millions of smallholder farmers in South Asia (SA) under diverse environments. The crop is grown in different seasons in a year with varying exposure to weather extremes, including high temperatures at critical growth stages which are expected to increase with climate change. This study assesses the impact of current and future heat stress on maize and the benefit of heat-tolerant varieties in SA. Annual mean maximum temperatures may increase by 1.4–1.8 °C in 2030 and 2.1–2.6 °C in 2050, with large monthly, seasonal, and spatial variations across SA. The extent of heat stressed areas in SA could increase by up to 12 % in 2030 and 21 % in 2050 relative to the baseline. The impact of heat stress and the benefit from heat-tolerant varieties vary with the level of temperature increase and planting season. At a regional scale, climate change would reduce rainfed maize yield by an average of 3.3–6.4 % in 2030 and 5.2–12.2 % in 2050 and irrigated yield by 3–8 % in 2030 and 5–14 % in 2050 if current varieties were grown under the future climate. Under projected climate, heat-tolerant varieties could minimize yield loss (relative to current maize varieties) by up to 36 and 93 % in 2030 and 33 and 86 % in 2050 under rainfed and irrigated conditions, respectively. Heat-tolerant maize varieties, therefore, have the potential to shield maize farmers from severe yield loss due to heat stress and help them adapt to climate change impacts.  相似文献   
107.
Deforestation is expanding and accelerating into the remaining areas of undisturbed forest, and the quality of the remaining forests is declining today. Assessing the climatic impacts of deforestation can help to rectify this alarming situation. In this paper, how historical deforestation may affect global climate through interactive ocean and surface albedo is examined using an Earth system model of intermediate complexity (EMIC). Control and anomaly integrations are performed for 1000 years. In the anomaly case, cropland is significantly expanded since AD 1700. The response of climate in deforested areas is not uniform between the regions. In the background of a global cooling of 0.08 °C occurring with cooler surface air above 0.4 °C across 30° N to 75° N from March to September, the surface albedo increase has a global cooling effect in response to global-scale replacement of forests by cropland, especially over northern mid-high latitudes. The northern mid-latitude (30° N–60° N) suffers a prominent cooling in June, suggesting that this area is most sensitive to cropland expansion through surface albedo. Most regions show a consistent trend between the overall cooling in response to historical deforestation and its resulting cooling due to surface albedo anomaly. Furthermore, the effect of the interactive ocean on shaping the climate response to deforestation is greater than that of prescribed SSTs in most years with a maximum spread of 0.05 °C. This difference is more prominent after year 1800 than that before due to the more marked deforestation. These findings show the importance of the land cover change and the land surface albedo, stressing the necessity to analyze other biogeophysical processes of deforestation using interactive ocean.  相似文献   
108.
109.
Ocean Dynamics - A dynamic two-dimensional depth-averaged (2DH) parameterization for flocculation of cohesive sediments is proposed based on the kinetic model by Winterwerp (J Hydraul Res...  相似文献   
110.
In this paper, we use the unstructured grid model SCHISM to simulate the thermohydrodynamics in a chain of baroclinic, interconnected basins. The model shows a good skill in simulating the horizontal circulation and vertical profiles of temperature, salinity, and currents. The magnitude and phases of the seasonal changes of circulation are consistent with earlier observations. Among the mesoscale and subbasin-scale circulation features that are realistically simulated are the anticyclonic coastal eddies, the Sebastopol and Batumi eddies, the Marmara Sea outflow around the southern coast of the Limnos Island, and the pathway of the cold water originating from the shelf. The superiority of the simulations compared to earlier numerical studies is demonstrated with the example of model capabilities to resolve the strait dynamics, gravity currents originating from the straits, high-salinity bottom layer on the shallow shelf, as well as the multiple intrusions from the Bosporus Strait down to 700 m depth. The warm temperature intrusions from the strait produce the warm water mass in the intermediate layers of the Black Sea. One novel result is that the seasonal intensification of circulation affects the interbasin exchange, thus allowing us to formulate the concept of circulation-controlled interbasin exchange. To the best of our knowledge, the present numerical simulations, for the first time, suggest that the sea level in the interior part of the Black Sea can be lower than the sea level in the Marmara Sea and even in some parts of the Aegean Sea. The comparison with observations shows that the timings and magnitude of exchange flows are also realistically simulated, along with the blocking events. The short-term variability of the strait transports is largely controlled by the anomalies of wind. The simulations demonstrate the crucial role of the narrow and shallow strait of Bosporus in separating the two pairs of basins: Aegean-Marmara Seas from one side and Azov-Black Seas from the other side. The straits of Kerch and Dardanelles provide sufficient interbasin connectivity that prevents large phase lags of the sea levels in the neighboring basins. The two-layer flows in the three straits considered here show different dependencies upon the net transport, and the spatial variability of this dependence is also quite pronounced. We show that the blocking of the surface flow can occur at different net transports, thus casting doubt on a previous approach of using simple relationships to prescribe (steady) outflow and inflow. Specific attention is paid to the role of synoptic atmospheric forcing for the basin-wide circulation and redistribution of mass in the Black Sea. An important controlling process is the propagation of coastal waves. One major conclusion from this research is that modeling the individual basins separately could result in large inaccuracies because of the critical importance of the cascading character of these interconnected basins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号