首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   0篇
地球物理   4篇
地质学   22篇
海洋学   5篇
天文学   56篇
  2022年   2篇
  2021年   5篇
  2020年   4篇
  2019年   2篇
  2018年   9篇
  2017年   8篇
  2016年   6篇
  2014年   1篇
  2012年   3篇
  2011年   3篇
  2009年   6篇
  2008年   5篇
  2007年   8篇
  2006年   6篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1991年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
11.
The Astronomical Röntgen Telescope X-ray Concentrator (ART-XC) is a hard X-ray telescope with energy response up to 30 keV, to be launched on board the Spectrum Röntgen Gamma (SRG) spacecraft in 2018. ART-XC consists of seven identical co-aligned mirror modules. Each mirror assembly is coupled with a CdTe double-sided strip (DSS) focal-plane detector. Eight X-ray mirror modules (seven flight and one spare units) for ART-XC were developed and fabricated at the Marshall Space Flight Center (MSFC), NASA, USA. We present results of testing procedures performed with an X-ray beam facility at MSFC to calibrate the point spread function (PSF) of the mirror modules. The shape of the PSF was measured with a high-resolution CCD camera installed in the focal plane with defocusing of 7 mm, as required by the ART-XC design. For each module, we performed a parametrization of the PSF at various angular distances Θ. We used a King function to approximate the radial profile of the near on-axis PSF (Θ < 9 arcmin) and an ellipse fitting procedure to describe the morphology of the far off-axis angular response (9 < Θ < 24 arcmin). We found a good agreement between the seven ART-XC flight mirror modules at the level of 10%. The on-axis angular resolution of the ART-XC optics varies between 27 and 33 arcsec (half-power diameter), except for the spare module.  相似文献   
12.
Water Resources - Publications on changes in river water regime in Russia under the conditions of current climate changes are reviewed. Most recent generalizations of such publications are...  相似文献   
13.
14.
The degree of circular polarizationp c is calculated for two models of a source of synchrotron radiation:
  1. A source with an inhomogeneous magnetic field and isotropic angular distribution of the electrons with respect to the magnetic field;
  2. A source with a homogeneous magnetic field and anisotropic angular distribution of the electrons in which the anisotropy of angular distribution substantially increases with the electron energy.
The first model can be used to describe extended radio-sources; and the second, to describe compact radio-sources. For those sources, whose observed polarization properties correspond to the first model, we obtain an integral equation which connects the observed distribution of the sources with the extent of their linear and circular polarization (p l andp c ) and the unknown distribution of the sources over the strengthB and the degree of homogeneity ?=(B 0/B)2 of the magnetic field;B 0 is a homogenous field,B 0?B. A solution of the integral equation obtained is found for a particular case. This solution makes it possible to determine the distribution of different types of sources over ? if the distribution of these sources in the extent of linear polarization is known. The formulae obtained make it possible to indicate which sources with a known degree of linear polarization should be expected to exhibit highest circular polarization. In the discussion of the first model the question is raised as to the information one can get about the magnetic field by using observations of both linear and circular polarization for a separate source, and for a number of sources. It is shown that the determination of the most probable values ofB and ? in a separate source based on the known values ofp l andp c for the source, is possible only if one knows the distribution overB and ? of the sources of the type to which the source in question belongs. The observational data now available make it possible to find the distribution of the sources only over ?. Since the distribution overB and ? is at present unknown, even a very strong upper limit forp c in the case of a separate source does not enable us to give an exact upper limit for the strength of the magnetic field in this source. In the first model the upper limit for the magnetic field can be obtained only if the upper limit ofp c is known for a certain number of sourcesN, withN?1. This limit allows for much stronger fields than are usually admitted. This last fact should be taken into consideration when one deals with the results of observations of circular polarization in sources with strong magnetic fields. The first model presents some difficulties when we compare it with observations of some compact sources. The second model can explain why one observes in these sources a violation of the lawp c ~v ?1/2 and a change of sign inp c when the frequency of the observationsv changes.  相似文献   
15.
We have measured the interstellar extinction in the region of ultradeep Galactic-field observations by the Chandra telescope (l II, b II) ≈ 0.1–1.42 using photometric data from the 2MASS infrared allsky survey. The angular resolution of our interstellar extinction map is 1′.8. We show that the interstellar extinction has a minimum, A V ~ 3.4, near the center of the Chandra field of view and increases to A V ~ 5.8–6 at the edge of the field of view. In addition, we show that the bulk of the extinction is gained in the Galactic disk and is approximately the same for all bulge stars. Our results will be subsequently used to process the Chandra data and to estimate the properties of the stellar population in this region.  相似文献   
16.
We present the results of our optical identifications of a set of X-ray sources from the INTEGRAL and SWIFT all-sky surveys. The optical data have been obtained with the 1.5-m Russian-Turkish Telescope (RTT-150). Nine X-ray sources have been identified with active galactic nuclei (AGNs). Two of them are located in the nearby spiral galaxies MCG-01-05-047 and NGC 973 seen almost edge-on. One source, IGR J16562-3301, is probably a BL Lac object (blazar). The remaining AGNs are observed as the starlike nuclei of spiral galaxies whose spectra exhibit broad emission lines. The relation between the hard X-ray (17–60 keV) luminosity and the [O III] 5007 line luminosity, log L x/L [O III] ≈ 2.1, holds good for most of the AGNs detected in hard X rays. However, the luminosities of some AGNs deviate from this relation. The fraction of such objects can reach ~20%. In particular, the [O III] line flux is lower for two nearby edge-on spiral galaxies. This can be explained by the effect of absorption in the galactic disks.  相似文献   
17.
The results of optical identifications of five hard X-ray sources in the Galactic plane from the INTEGRAL all-sky survey are presented. The X-ray data on one source (IGR J20216+4359) are published for the first time. The optical observations were performed with the 1.5-m RTT-150 telescope (Turkish National Observatory, Antalya, Turkey) and the 6-m BTA telescope (Special Astrophysical Observatory, Nizhny Arkhyz, Russia). A blazar, three Seyfert galaxies, and a high-mass X-ray binary are among the identified sources.  相似文献   
18.
We present results of four-color (WBVR) photoelectric observations of the close binary HZ Her = Her X-1 in 1986–1988. As a rule, the duration of the observations exceeded two 35-day X-ray orbital periods in the 1986–1988 observing seasons. The accuracy and length of the photoelectric observations facilitated multi-faceted studies, which enabled us to define several fine photometric effects in the light curves of the binary more precisely and attempt to interpret them in a model for the matter flow from the optical component to the accretion disk around the neutron star. This model provides a satisfactory explanation for the inhomogeneity of the gas flow and “hot spot,” as well as the existence of distinct “splashes” moving in their own Keplerian orbits around the outer parts of the Keplerian disk. We present series of light curves for all the observing seasons, as well as color-color diagrams that reflect the physics of various photometric effects. The transformation coefficients for each of the instrumental systems for the three observatories at which the observations were carried out are given. Atmospheric extinction was taken into account duringmulti-color observations of the object, with subsequent correction for atmospheric effects with accuracies ranging from 0.003 m to 0.005 m for air masses up to M(z) = 2.  相似文献   
19.
The angular distribution of low-frequency radiation after a single scattering by relativistic electrons with an isotropic velocity distribution differs markedly from the Rayleigh angular function. In particular, the scattering by an ensemble of ultrarelativistic electrons is described by the law p=1?cosα, where α is the scattering angle. Thus, photons are mostly scattered backward. We discuss some consequences of this fact for astrophysical problems. We show that a hot atmosphere of scattering electrons is more reflective than a cold one: the fraction of incident photons reflected after a single scattering can be larger than that in the former case by up to 50%. This must affect the photon exchange between cold accretion disks and hot coronae (or advective flows) near relativistic compact objects, as well as the rate of cooling (through multiple inverse-Compton scattering of the photons supplied from outside) of optically thick clouds of relativistic electrons in compact radio sources. Scattering asymmetry also causes the spatial diffusion of photons to proceed more slowly in a hot plasma than in a cold one, which affects the shapes of Comptonization spectra and the time delay in the detection of soft and hard radiation from variable X-ray sources.  相似文献   
20.
It is pointed out that, because of the large Faraday rotation an outlet of linear polarization from the photosphere of a white dwarf is hampered. In accordance with this fact it is proposed to distinguish two types of magnetic white dwarfs. The first type (its representative is Grw 70°8247) has a linear polarization which is comparable in magnitude with the circular one. Polarization of radiation from the white dwarfs of the first type cannot arise in the photosphere. It arises in the corona of the star either as a result of cyclotron emission of hot electrons (T~106 K) or as a result of scattering of slightly polarized emission from the photosphere in the corona. For the first type dwarfs such magnetic fields are required thatω B ωopt, i.e.B(1?3)×108G. The white dwarfs of the second type (its representative is G 99-37) have their linear polarization much smaller than the circular one. Polarization of these white dwarfs can arise as a result of the transfer of radiation in the nonisothermal photosphere. Magnetic fields required for the second type can be much smaller:B cos γ=(1?10)×106 G. It is shown that the photospheric model allows to obtain the quantitative accordance of the theory with all the observational data for G 99-37 and is not in accordance with the data for Grw 70°8247, at the same time the model with cyclotron emission from the corona explains the magnitude of both linear and circular polarization and their wavelength dependence for Grw 70°8247.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号