首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   10篇
  国内免费   5篇
大气科学   3篇
地球物理   61篇
地质学   68篇
海洋学   66篇
天文学   25篇
综合类   2篇
自然地理   20篇
  2024年   1篇
  2021年   4篇
  2019年   2篇
  2018年   2篇
  2017年   10篇
  2016年   8篇
  2015年   13篇
  2014年   10篇
  2013年   12篇
  2012年   13篇
  2011年   21篇
  2010年   16篇
  2009年   11篇
  2008年   13篇
  2007年   9篇
  2006年   11篇
  2005年   13篇
  2004年   13篇
  2003年   8篇
  2002年   1篇
  2001年   6篇
  2000年   5篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1972年   1篇
  1969年   1篇
排序方式: 共有245条查询结果,搜索用时 250 毫秒
191.
Energy dissipation devices are necessary for base‐isolated buildings to control the deformation in the isolation system and to dissipate the earthquake‐induced energy. U‐shaped steel dampers (also known as U‐dampers) dissipate energy through plastic deformation of specially designed U‐shaped steel elements. This type of device can be installed at several locations in the isolation system. U‐dampers have been widely used in Japan for different types of isolated structures, such as hospitals, plants and residential buildings, since the 1995 Kobe Earthquake. Previous research has used static tests to estimate the performance of U‐dampers. However, the ultimate plastic deformation capacities and hysteretic behaviors of full‐scale U‐dampers under dynamic excitations still remain unclear. In addition, it is unclear whether the initial temperature has an effect on the hysteretic behavior and plastic deformation capacity of U‐dampers. In this paper, two series of dynamic loading tests of U‐dampers were conducted to evaluate the issues described earlier. The major findings of the study are (i) the loading speed has little effect on the plastic deformation capacity of U‐dampers; (ii) method to evaluate the ultimate plastic deformation capacities of U‐shaped steel dampers of different sizes is established using a Manson–Coffin relation‐based equation that is based on the peak‐to‐peak horizontal shear angle γt, which is defined as the lateral deformation amplitude (peak‐to‐peak amplitude) divided by the height of the dampers; (iii) the loading rate and the initial temperature have a minimal effect on the hysteretic behavior of the U‐dampers; and (iv) a bilinear model is proposed to simulate the force‐deformation relationships of the U‐dampers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
192.
A reliable performance of anti‐seismic devices when the upper‐structure is subjected to strong biaxial seismic excitation is of vital importance to ensure the latter doesn't reach critical behavior. U‐shaped steel dampers are hysteretic devices used to dissipate the earthquake‐induced energy of base‐isolated structures. In the framework of performance‐based design, which is gaining more and more recognition, it is of particular importance to assess the performance of base‐isolated structures with such dampers under different intensity levels of bidirectional ground motion. To achieve this goal, an analytical model able to simulate the bidirectional displacement response of an isolation system is adopted. Incremental dynamic analysis (IDA) is used to obtain the relation between the earthquake‐induced bidirectional damage of U‐shaped steel dampers and different intensity levels of the considered records. The performance of the dampers is categorized into 5 levels delimited by 4 limit states for which fragility curves are derived. The results obtained using the bidirectional approach are quantitatively compared to those given by employing an in‐plane model (widely used in current design practices in Japan) with the purpose of assessing whether the latter provides unconservative estimates of the performance of the dampers. The main conclusion is that, for large seismic intensities, the safety margin against fracture of the dampers is significantly overestimated when an in‐plane model is adopted. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
193.

Over-exploited groundwater is expected to remain the predominant source of domestic water in suburban areas of Hanoi, Vietnam. In order to evaluate the effect on groundwater recharge, of decreasing surface-water bodies and land-use change caused by urbanization, the relevant groundwater systems and recharge pathways must be characterized in detail. To this end, water levels and water quality were monitored for 3 years regarding groundwater and adjacent surface-water bodies, at two typical suburban sites in Hanoi. Stable isotope (δ18O, δD of water) analysis and hydrochemical analysis showed that the water from both aquifers and aquitards, including the groundwater obtained from both the monitoring wells and the neighboring household tubewells, was largely derived from evaporation-affected surface-water bodies (e.g., ponds, irrigated farmlands) rather than from rivers. The water-level monitoring results suggested distinct local-scale flow systems for both a Holocene unconfined aquifer (HUA) and Pleistocene confined aquifer (PCA). That is, in the case of the HUA, lateral recharge through the aquifer from neighboring ponds and/or irrigated farmlands appeared to be dominant, rather than recharge by vertical rainwater infiltration. In the case of the PCA, recharge by the above-lying HUA, through areas where the aquitard separating the two aquifers was relatively thin or nonexistent, was suggested. As the decrease in the local surface-water bodies will likely reduce the groundwater recharge, maintaining and enhancing this recharge (through preservation of the surface-water bodies) is considered as essential for the sustainable use of groundwater in the area.

  相似文献   
194.
195.
Recently strong seismic waves or long period seismic waves have been observed in various earthquakes that occurred in Japan. As a result improvements of existing seismic isolation systems are deemed necessary. The present study proposed an intelligent seismic isolation system encompassing air bearings and earthquake early warning (EEW) system. Such system exhibits adequate isolation performance. The air bearings are isolation device that may render infinite the superstructure natural period by floating them, and the EEW is applied for a trigger of isolation. This paper illustrates the proposed system and discusses the experimental results of a test carried out with the system. Laboratory tests carried out in the present research demonstrate the effectiveness of the proposed base isolated systems and prove its efficacy in mitigating the effects of three-dimensional seismic waves. For example, the system suppressed the horizontal response acceleration of an isolation target to 38% of input acceleration.  相似文献   
196.
The energy dissipation capacity of a structure is a very important index that indicates the structural performance in energy‐based seismic design. This index depends greatly on the structural components that form the whole system. Owing to the wide use of the strong‐column weak‐beam strength hierarchy where steel beams dissipate the majority of earthquake input energy to the structures, it is necessary to evaluate the energy dissipation capacity of the beams. Under cyclic loadings such as seismic effects, the damage of the beams accumulates. Therefore, loading history is known to be the most pivotal factor influencing the deformation capacity and energy dissipation capacity of the beams. Seismic loadings with significantly different characteristics are applied to structural beams during different types of earthquakes and there is no unique appropriate loading protocol that can represent all types of seismic loadings. This paper focuses on the effects of various loading histories on the deformation capacity and energy dissipation capacity of the beams. Cyclic loading tests of steel beams were performed. In addition, some experimental results from published tests were also collected to form a database. This database was used to evaluate the energy dissipation capacity of steel beams suffering from ductile fracture under various loading histories. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
197.
Wakefieldite‐(Nd), NdVO4, is a new mineral found from the Arase stratiform ferromanganese deposit in Kochi Prefecture, Shikoku Island, Japan. It is the Nd‐dominant analogue of wakefieldite‐(Y) and wakefieldite‐(Ce). The ferromanganese ore specimen mainly consists of hematite and caryopilite, and wakefieldite‐(Nd) is typically enclosed in caryopilite. Wakefieldite‐(Nd) is tetragonal, I41/amd, a = 7.338(16) Å, c = 6.509(19) Å, V = 350.5(18) Å3, Z = 4. The four strongest lines in the X‐ray diffraction pattern [d(Å), I/I0, hkl] using a Gandolfi camera are (3.67, 100, 200); (2.74, 51, 112); (4.84, 27, 101) and (1.89, 25, 312). Chemical composition of wakefieldite‐(Nd) are V2O3 35.25, As2O3 0.93, SiO2 0.14, MnO 1.45, Fe2O3 0.41, Y2O3 2.87, La2O3 7.61, Ce2O3 7.37, Pr2O3 6.04, Nd2O3 26.79, Sm2O3 4.41, Eu2O3 1.36, Gd2O3 3.41, Tb2O3 0.22, Dy2O3 1.41, Er2O3 0.10, total 99.77 wt.%. The empirical formula is (Nd0.403La0.118Ce0.114Pr0.093Y0.064Sm0.064Mn0.052Gd0.048Eu0.020Dy0.019Fe0.013Tb0.003Er0.001)1.012(V0.981As0.020Si0.006)1.007O4 on the basis of O = 4. The calculated density is 4.782 g/cm3. Microtexture and co‐existing relationship between wakefieldite‐(Nd) and caryopilite suggest that recrystallization and dehydration of Fe‐ and Mn‐oxyhydroxide led to the generation of hematite, caryopilite, rhodochrosite and wakefieldite‐(Nd) by the metamorphism during the accretion of the host unit of the Arase deposit. Chondrite‐normalized REE pattern of the host ferromanganese ore, which is regarded as oceanic metalliferous sediment in origin, shows negative Ce anomaly. Chemical composition of wakefieldite‐(Nd) reflects Ce‐depleted bulk composition of REE‐enriched ferromanganese ore.  相似文献   
198.
Seasonal and interannual variations in physicochemical properties (i.e., temperature, salinity, dissolved oxygen and dissolved inorganic nutrients), chlorophyll a (Chl-a), particulate carbon and nitrogen (PC and PN, respectively), and primary production were investigated in the neritic area of Sagami Bay, Kanagawa, Japan, from January 2002 to December 2008. These abiotic/biotic variables, except for NH4 +–N, repeated similar seasonal variations for all 7 years. On the basis of the analysis of data obtained on 167 sampling dates, depth-integrated primary production in this water can be easily estimated from Chl-a at the surface using the regression equations obtained in the present study. Intermittently high values of dissolved inorganic nutrients, Chl-a, PC, PN and primary productivity at the surface during the summer stratified period were induced by high freshwater discharge from the rivers after rainfalls and by the expansion of nutrient-rich Tokyo Bay Water. Temperature, salinity and dissolved inorganic nutrients showed drastic variations within a scale of a few days and/or weeks, and these variations were related to sea levels that represent the intrusion of the Kuroshio Water, Intermediate Oyashio Water or deep water from the continental slope. However, there was no consistent trend in the variations in Chl-a, PC, PN and primary production due to the complex effects of these waters.  相似文献   
199.
A numerical model consisting of simplified equations was developed to simulate nitrate concentrations in groundwater in a reservoir area of a subsurface dam in a Quaternary limestone region. The model was composed of a water balance sub-model and a nitrogen balance sub-model; the water balance sub-model was built from tank models which can express the quick dilution near caves and the effect of dam construction; and the nitrogen balance sub-model was made to represent changes in nitrogen forms and movement of nitrogen in the soil and aquifer zones. The model was calibrated and verified by observed data before and after the dam construction and then applied to a predictive simulation under a simple assumption that rainfall descends gradually. The model seemed applicable to long-term prediction of changes in NO3-N in the reservoir area.  相似文献   
200.
The gas and fluid transport in magmas via permeable flow through interconnected bubble networks controls the rate of outgassing from magmas ascending in volcanic conduits and the fluid transport in the mushy boundary layer of magma reservoirs. Hence, clarifying its mechanism and rate is crucial to understanding the explosivity of volcanic eruptions and the evolution and dynamics of a magma reservoir. Recent experimental studies have determined the gas permeabilities in crystal-free rhyolite and basalt. However, no experimental study has investigated the effect of the crystal contents on the permeable gas transport in magmas. In this study, we performed decompression experiments for hydrous rhyolitic melts having crystallinities of 30 and 50 vol% to examine the effect of crystals on the bubble microstructure and gas permeability during magma vesiculation. Size-controlled (100-meshed) corundum crystals were used as an analog of the phenocrysts in silicic magmas. Microstructural analyses using X-ray CT showed that bubbles coalesce and their connectivity increases with a decrease in the final pressure after the decompression, that is, an increase in the vesicularity. As long as the vesicularities of melt part in the crystal-free basis (melt vesicularity) were similar, no clear effect of the crystallinity on the degree of bubble coalescence and connectivity was observed at melt vesicularities <68 vol%. The corundum showed a large contact angle with aqueous fluid as well as plagioclase and alkaline feldspar; this failed to induce the efficient heterogeneous nucleation and coalescence of bubbles on its surface. The gas permeabilities of all the run products were lower than the detection limits of the present analysis (the order of 10−16 m2) at melt vesicularities <68 vol%. These results show that silicic magmas containing 30 and 50 vol% phenocrysts with a large contact angle have low gas permeabilities until the vesicularity becomes large (at least >68 vol%). This result indicates that the permeable fluid transport through a deep volcanic conduit, which has been proposed on the basis of the observations of volcanic gases and natural products, is so slow that other processes, like shear deformation or magma convection, may be needed to explain the observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号