首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   6篇
测绘学   13篇
大气科学   9篇
地球物理   23篇
地质学   55篇
海洋学   4篇
天文学   14篇
综合类   2篇
自然地理   7篇
  2022年   3篇
  2021年   5篇
  2020年   5篇
  2019年   3篇
  2018年   17篇
  2017年   12篇
  2016年   12篇
  2015年   7篇
  2014年   9篇
  2013年   11篇
  2012年   3篇
  2011年   4篇
  2010年   5篇
  2009年   6篇
  2008年   8篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
41.
Anisotropic spatially homogeneous Bianchi type-I cosmological model in bimetric theory of gravitation (Rosen, 1973) is considered. It is shown that the Bianchi type-I cosmological model does not exist in case of both meson field and mesonic perfect fluid (with or without mass parameter). Hence only vacuum models can be obtained (Reddy and Venkateswarlu, 1989). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
42.
In recent major earthquakes, the researchers have found the need for consideration of vertical seismic acceleration for the stability analysis of the man-made and natural slopes. However, in most past studies, the performance of slopes has been assessed by accounting only the horizontal seismic component of the ground motion, without giving due weightage to the effect of vertical component. In the present study, analytical expressions are derived to determine the factor of safety, yield seismic coefficient and consequently the seismic displacement of cohesionless soil slope under combined horizontal and vertical components of the ground motion. The derivation uses the Newmark’s sliding block approach, in which the soil slope with a planar failure surface within the framework of conventional pseudo-static analysis is assumed to follow the Mohr-Coulomb failure criterion. The effects of vertical seismic coefficient on the stability of cohesionless slope have been studied through a set of graphical presentations for a specific range of soil parameters. It is observed that overlooking the effect of the vertical component of the ground motion on factor of safety and the displacement while designing the slope may be detrimental, resulting in the slope failure. The general expressions presented in this paper may be highly useful in the field of earthquake geotechnical engineering practice for designing the cohesionless soil slopes under combined horizontal and vertical seismic loads.  相似文献   
43.
The lowest unit of the Talchir Formation of Talchir Basin, Orissa, was described by pioneer workers as the ‘basal boulder bed’. In an attempt to explain the co-existence of gravel and clay, materials of contrasting hydraulic properties, a probable situation resembling the effects of the action of ground-ice enabled boulders to be carried down by sluggish currents resulting in an intermixture of large boulders and fine mud was conceived. Misinterpretation of this conclusion led to a general tendency to describe the ‘basal boulder bed’ as ‘glacial tillite’. However, the unit described as ‘basal boulder bed’ is actually represented by a matrix rich conglomerate with pockets of normally graded silty clay. The present study reveals that the depositional imprints preserved in this part of the sedimentary succession indicate emplacement of successive debris flows generated through remobilization of pre-existing unconsolidated sediments. Small pockets of fine-grained turbidites presumably deposited from the entrained turbidity currents associated with the debris flows suggest the composite character of the debris flow deposit.  相似文献   
44.
In this paper, we have constructed mesonic stiff fluid cosmological models in five dimensional LRS Bianchi type-I and Bianchi type-VI0 space times in general theory of relativity. Some physical and geometrical properties of the models are discussed.  相似文献   
45.
46.
Field experiment was conducted in a sandy loam soil of Indian Agricultural Research Institute, New Delhi during the year 2011–13 to see the effect of irrigation, mulch and nitrogen on canopy spectral reflectance indices and their use in predicting the grain and biomass yield of wheat. The canopy reflectances were measured using a hand held ASD FieldSpec Spectroradiometer at booting stage of wheat. Four spectral reflectance indices (SRIs) viz. RNDVI (Red Normalized Difference Vegetation Index), GNDVI (Green Normalized Difference Vegetation Index), SR (Simple Ratio) and WI (Water Index) were computed using the spectral reflectance data. Out of these four indices, RNDVI, GNDVI and SR were significantly and positively related with the grain and biomass yield of wheat whereas WI was significantly and negatively related with the grain and biomass yield of wheat. Calibration with the second year data showed that among the SRIs, WI could account for respectively, 85 % and 86 % variation in grain and biomass yield of wheat with least RMSE (395 kg ha?1 (15 %) for grain yield and 1609 kg ha?1 (20 %) for biomass yield) and highest d index (0.95 for grain yield and 0.91 for biomass yield). Therefore it can be concluded that WI measured at booting stage can be successfully used for prediction of grain and biomass yield of wheat.  相似文献   
47.
48.
In this paper, we have investigated Bianchi type VI h cosmological model filled with perfect fluid in the framework of f(R,T) gravity, where R is the Ricci scalar and T is the trace of the energy-momentum tensor proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). We have obtained the cosmological models by solving the field equations. Some physical behaviors of the model are also studied.  相似文献   
49.
Meteorologic-driven processes exert large and diverse impacts on lakes’ internal heating, cooling, and mixing. Thus, continued global warming and climate change will affect lakes’ thermal properties, dynamics, and ecosystem. The impact of climate change on Lake Tahoe (in the states of California and Nevada in the United States) is investigated here, as a case study of climate change effects on the physical processes occurring within a lake. In the Tahoe basin, air temperature data show upward trends and streamflow trends indicate earlier snowmelt. Precipitation in the basin is shifting from snow to rain, and the frequency of intense rainfall events is increasing. In-lake water temperature records of the past 38 years (1970–2007) show that Lake Tahoe is warming at an average rate of 0.013°C/year. The future trends of weather variables, such as air temperature, precipitation, longwave radiation, downward shortwave radiation, and wind speed are estimated from predictions of three General Circulation Models (GCMs) for the period 2001–2100. Future trends of weather variables of each GCM are found to be different to those of the other GCMs. A series of simulation years into the future (2000–2040) is established using streamflows and associated loadings, and meteorologic data sets for the period 1994–2004. Future simulation years and trends of weather variables are selected so that: (1) future simulated warming trend would be consistent with the observed warming trend (0.013°C/year); and (2) future mixing pattern frequency would closely match with the historical mixing pattern frequency. Results of 40-year simulations show that the lake continues to become warmer and more stable, and mixing is reduced. Continued warming in the Tahoe has important implications for efforts towards managing biodiversity and maintaining clarity of the lake.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号