首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   4篇
测绘学   1篇
大气科学   3篇
地球物理   9篇
地质学   23篇
海洋学   2篇
天文学   8篇
自然地理   1篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   6篇
  2014年   2篇
  2013年   1篇
  2012年   5篇
  2011年   5篇
  2010年   6篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2003年   1篇
  1933年   2篇
  1927年   1篇
  1922年   1篇
排序方式: 共有47条查询结果,搜索用时 265 毫秒
21.
Extensive research and increasing number of potential industrial applications made ionic liquids (ILs) important materials in design of new, cleaner technologies. Together with the technological applicability, the environmental fate of these chemicals is considered and significant efforts are being made in designing strategies to mitigate their potential negative impacts. Many ILs are proven to be poorly biodegradable and relatively toxic. Bioaugmentation is known as one of the ways of enhancing the microbial capacity to degrade xenobiotics by addition of specialized strains. The aim of current work was to select microbial species that could be used for bioaugmentation in order to enhance biodegradation of ILs in the environment. We subjected activated sewage sludge to the selective pressure of 1-methyl-3-octylimidazolium chloride ([OMIM][Cl]) and isolated nine strains of bacteria which were able to prevail in these conditions. Subsequently, we utilized axenic cultures (pure cultures) of these bacteria as well as mixed consortium to degrade this IL. In addition, we performed growth inhibition tests and found that bacteria were able to grow in 2 mM, but not in 20 mM solutions of [OMIM][Cl]. The biodegradation conducted by the isolated consortium was higher than conducted by the activated sewage sludge when normalized by the cell density, which indicates that the isolated strains seem specifically suited to degrade the IL.  相似文献   
22.
Submarine landslides can generate local tsunamis with high run-ups, posing a hazard to human lives and coastal facilities. Both ancient (giant Storegga slide off Norwegian coast, 8200 B. P.) and recent (Papua New Guinea, 1998) events show high potential danger of tsunamigenic landslides and the importance of mitigation efforts. This contribution presents newly discovered landslides 70 km off Padang (Western Sumatra, Indonesia) based on recent bathymetry measurements. This highly populated city with over 750,000 inhabitants exhibits high tsunami vulnerability due to its very low elevation. We model tsunamis that might have been induced by the detected landslide events. Estimations of run-up heights extrapolated from offshore tsunami amplitudes for Padang and other locations in the northern Mentawai fore-arc basin yield maximum values of about 3 m. We also provide a systematic parametric study of landslide-induced tsunamis, which allows us to distinguish potentially dangerous scenarios for Padang. Inside the fore-arc basin, scenarios involving volumes of 0.5–25 km³ could endanger Padang. Apart from slide volume, the hazard distribution mainly depends on three landslide parameters: distance to Padang, water depth in the generation region, and slide direction.  相似文献   
23.
Freshwater discharge is one main element of the hydrological cycle that physically and biogeochemically connects the atmosphere, land surface, and ocean and directly responds to changes in pCO2. Nevertheless, while the effect of near-future global warming on total river runoff has been intensively studied, little attention has been given to longer-term impacts and thresholds of increasing pCO2 on changes in the partitioning of surface and subsurface flow paths across broad climate zones. These flow paths and their regional responses have a significant role for vegetation, soils, and nutrient leaching and transport. We present climate simulations for modern, near-future (850?ppm), far-future (1880?ppm), and past Late Cretaceous (1880?ppm) pCO2 levels. The results show large zonal mean differences and the displacement of flows from the surface to the subsurface depending on the respective pCO2 level. At modern levels the ratio of deeper subsurface to near-surface flows for tropical and high northern latitudes is 1:4.0 and 1:0.5, respectively, reflecting the contrast between permeable tropical soils and the areas of frozen ground in high latitudes. There is a trend toward increased total flow in both climate zones at 850?ppm, modeled to be increases in the total flow of 34 and 51%, respectively, with both zones also showing modest increases in the proportion of subsurface flow. Beyond 850?ppm the simulations show a distinct divergence of hydrological trends between mid- to high northern latitudes and tropical zones. While total wetting reverses in the tropics beyond 850?ppm due to reduced precipitation, with average zonal total runoff decreasing by 46% compared to the 850?ppm simulation, the high northern latitude zone becomes slightly wetter with the average zonal total runoff increasing by a further 3%. The ratio of subsurface to surface flows in the tropics remains at a level similar to the present day, but in the high northern latitude zone the ratio increases significantly to 1:1.6 due to the loss of frozen ground. The results for the high pCO2 simulations with the same uniform soil and vegetation cover as the Cretaceous are comparable to the results for the Cretaceous simulation, with higher fractions of subsurface flow of 1:5.4 and 1:5.6, respectively for the tropics, and 1:2.2 and 1:1.6, respectively for the high northern latitudes. We suggest that these fundamental similarities between our far future and Late Cretaceous models provide a framework of possible analogous consequences for (far-) future climate change, within which the integrated human impact over the next centuries could be assessed. The results from this modeling study are consistent with climate information from the sedimentary record which highlights the crucial role of terrestrial-marine interactions during past climate change. This study points to profound consequences for soil biogeochemical cycling, with different latitudinal expressions, passing of climate thresholds at elevated pCO2 levels, and enhanced export of nutrients to the ocean at higher pCO2.  相似文献   
24.
25.
Sascha Kempf  Uwe Beckmann 《Icarus》2010,206(2):446-457
Pre-Cassini models of Saturn’s E ring [Horányi, M., Burns, J., Hamilton, D., 1992. Icarus 97, 248-259; Juhász, A., Horányi, M., 2002. J. Geophys. Res. 107, 1-10] failed to reproduce its peculiar vertical structure inferred from Earth-bound observations [de Pater, I., Martin, S.C., Showalter, M.R., 2004. Icarus 172, 446-454]. After the discovery of an active ice-volcanism of Saturn’s icy moon Enceladus the relevance of the directed injection of particles for the vertical ring structure of the E ring was swiftly recognised [Juhász, A., Horányi, M., Morfill, G.E., 2007. Geophys. Res. Lett. 34, L09104; Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., Economou, T., Schmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. However, simple models for the delivery of particles from the plume to the ring predict a too small vertical ring thickness and overestimate the amount of the injected dust.Here we report on numerical simulations of grains leaving the plume and populating the dust torus of Enceladus. We run a large number of dynamical simulations including gravity and Lorentz force to investigate the earliest phase of the ring particle life span. The evolution of the electrostatic charge carried by the initially uncharged grains is treated selfconsistently. Freshly ejected plume particles are moving in almost circular orbits because the Enceladus orbital speed exceeds the particles’ ejection speeds by far. Only a small fraction of grains that leave the Hill sphere of Enceladus survive the next encounter with the moon. Thus, the flux and size distribution of the surviving grains, replenishing the ring particle reservoir, differs significantly from the flux and size distribution of the particles freshly ejected from the plume. Our numerical simulations reproduce the vertical ring profile measured by the Cassini Cosmic Dust Analyzer (CDA) [Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., EconoDmou, T., Smchmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. From our simulations we calculate the deposition rates of plume particles hitting Enceladus’ surface. We find that at a distance of 100 m from a jet a 10 m sized ice boulder should be covered by plume particles in 105-106 years.  相似文献   
26.
We consider saltwater–freshwater fingering instabilities in a saturated porous medium. In the first part, we present three-dimensional results obtained from a laboratory experiment using non-invasive imaging. In the second part, we define a set of model problems in which the performed laboratory experiments can be ranged in. Due to its highly non-linear behavior and inevitable modeling errors, a detailed numerical reproduction of the physical concentration measurements cannot be expected. Nevertheless, four criteria have been identified, two quantitative and two qualitative, which facilitate a substantiated comparison of the physical experiment and the numerical simulation. With respect to these criteria a high degree of similarity could be observed. The use of these features allows a deeper understanding of the physical processes and the influence of the initial conditions.  相似文献   
27.
International Journal of Earth Sciences - The Rhodopes in Bulgaria and Greece represent a nappe stack of high-grade units with polymetamorphic history. Constraining the time of metamorphism in...  相似文献   
28.
29.
The form of visual representation affects both the way in which the visual representation is processed and the effectiveness of this processing. Different forms of visual representation may require the employment of different cognitive strategies in order to solve a particular task; at the same time, the different representations vary as to the extent to which they correspond with an individual’s preferred cognitive style. The present study employed a Navon-type task to learn about the occurrence of global/local bias. The research was based on close interdisciplinary cooperation between the domains of both psychology and cartography. Several different types of tasks were made involving avalanche hazard maps with intrinsic/extrinsic visual representations, each of them employing different types of graphic variables representing the level of avalanche hazard and avalanche hazard uncertainty. The research sample consisted of two groups of participants, each of which was provided with a different form of visual representation of identical geographical data, such that the representations could be regarded as ‘informationally equivalent’. The first phase of the research consisted of two correlation studies, the first involving subjects with a high degree of map literacy (students of cartography) (intrinsic method: N?=?35; extrinsic method: N?=?37). The second study was performed after the results of the first study were analyzed. The second group of participants consisted of subjects with a low expected degree of map literacy (students of psychology; intrinsic method: N?=?35; extrinsic method: N?=?27).The first study revealed a statistically significant moderate correlation between the students’ response times in extrinsic visualization tasks and their response times in a global subtest (r?=?0.384, p?<?0.05); likewise, a statistically significant moderate correlation was found between the students’ response times in intrinsic visualization tasks and their response times in the local subtest (r?=?0.387, p?<?0.05). At the same time, no correlation was found between the students’ performance in the local subtest and their performance in extrinsic visualization tasks, or between their scores in the global subtest and their performance in intrinsic visualization tasks. The second correlation study did not confirm the results of the first correlation study (intrinsic visualization/‘small figures test’: r?=?0.221; extrinsic visualization/‘large figures test’: r?=?0.135). The first phase of the research, where the data was subjected to statistical analysis, was followed by a comparative eye-tracking study, whose aim was to provide more detailed insight into the cognitive strategies employed when solving map-related tasks. More specifically, the eye-tracking study was expected to be able to detect possible differences between the cognitive patterns employed when solving extrinsic- as opposed to intrinsic visualization tasks. The results of an exploratory eye-tracking data analysis support the hypothesis of different strategies of visual information processing being used in reaction to different types of visualization.  相似文献   
30.
During its cruise phase, prior to encountering Jupiter, the Cosmic Dust Analyser (CDA) onboard the Cassini spacecraft returned time of flight mass spectra (TOF MS) of two interplanetary dust particles. Both particles were found to be iron-rich, with possible traces of hydrogen, carbon, nickel, chromium, manganese, titanium, vanadium and minor silicates. Carbon, hydrogen, oxygen and potassium are also present as possible contaminants of the impact target of CDA. Silicates and magnesium do not feature predominantly in the spectra; this is surprising considering the expected dominance of silicate-rich minerals in interplanetary dust particles. The particle masses are and . The corresponding radii ranges for the particles, assuming densities from 7874-2500 kg m−3 are 0.7-4 μm and 2.6-6.8 μm, respectively. With the same density assumptions the β values (ratio of radiation pressure to gravitational force) are estimated as 0.027-0.21 and 0.016-0.06 respectively, allowing possible orbits to be calculated. The resulting orbits are bound and prograde with semi-major axes, eccentricities and inclinations in the region of 0.3-1.26 AU, 0.4-1.0 and 0-60° for the first particle and 0.8-2.5 AU, 0.2-0.9 and 0-30° for the second. The more probable orbits within these ranges indicate that the first particle is in an Aten-like orbit, whilst the second particle is in an Apollo-like orbit, despite both grains having very similar, predominantly metallic compositions. Other possible orbital solutions for both particles encompass orbits which more closely resemble those of Jupiter-family comets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号