首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   4篇
测绘学   1篇
大气科学   2篇
地球物理   9篇
地质学   16篇
海洋学   2篇
天文学   8篇
自然地理   1篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   1篇
  2013年   1篇
  2012年   5篇
  2011年   4篇
  2010年   5篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2003年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
11.
Dust particles, like photons, carry information from remote sites in space and time. From knowledge of the dust particles' birthplace and their bulk properties, we can learn about the remote environment out of which the particles were formed. This approach is called “Dust Astronomy” which is carried out by means of a dust telescope on a Dust Observatory in space. Targets for a dust telescope are the local interstellar medium and nearby star forming regions, as well as comets and asteroids. Dust from interstellar and interplanetary sources is distinguished by accurately sensing their trajectories. Trajectory sensors may use the electric charge signals that are induced when charged grains fly through the detector. Modern in-situ dust impact detectors are capable of providing mass, speed, physical and chemical information of dust grains in space. A Dust Observatory mission is feasible with state-of-the-art technology. It will (1) provide the distinction between interstellar dust and interplanetary dust of cometary and asteroidal origin, (2) determine the elemental composition of impacting dust particles, and (3) monitor the fluxes of various dust components as a function of direction and particle masses.  相似文献   
12.
Vertical flow filters are containers filled with porous medium that are recharged from top and drained at the bottom, and are operated at partly saturated conditions. They have recently been suggested as treatment technology for groundwater containing volatile organic compounds (VOCs). Numerical reactive transport simulations were performed to investigate the relevance of different filter operation modes on biodegradation and/or volatilization of the contaminants and to evaluate the potential limitation of such remediation mean due to volatile emissions. On the basis of the data from a pilot‐scale vertical flow filter intermittently fed with domestic waste water, model predictions on the system’s performance for the treatment of contaminated groundwater were derived. These simulations considered the transport and aerobic degradation of ammonium and two VOCs, benzene and methyl tertiary butyl ether (MTBE). In addition, the advective‐diffusive gas‐phase transport of volatile compounds as well as oxygen was simulated. Model predictions addressed the influence of depth and frequency of the intermittent groundwater injection, degradation rate kinetics, and the composition of the filter material. Simulation results show that for unfavorable operation conditions significant VOC emissions have to be considered and that operation modes limiting VOC emissions may limit aerobic biodegradation. However, a suitable combination of injection depth and composition of the filter material does facilitate high biodegradation rates while only little VOC emissions take place. Using such optimized operation modes would allow using vertical flow filter systems as remediation technology suitable for groundwater contaminated with volatile compounds.  相似文献   
13.
The development of a soil plug inside an open-ended pile with respect to the installation method is examined using numerical simulations. In this paper, the penetration process of an open-ended tubular pile with diameter D = 61 cm into granular soil is investigated. The aim is to achieve a better understanding of the mechanisms of soil plugging inside open-ended piles with respect to the installation method. As an example, the horizontal stress distribution inside the tubular pile after installation shows significant increase depending on the installation method. The numerical results are compared to experimental data.  相似文献   
14.
Contrary to ‘static’ pathways that are defined once for all, this article deals with the need for policy makers to adopt a dynamic adaptive policy pathway for managing decarbonization over the period of implementation. When choosing a pathway as the most desirable option, it is important to keep in mind that each decarbonization option relies on the implementation of specific policies and instruments. Given structural, effectiveness, and timing uncertainties specific to each policy option, they may fail in delivering the expected outcomes in time. The possibility of diverging from an initial decarbonization trajectory to another one without incurring excessive costs should therefore be a strategic element in the design of an appropriate decarbonization strategy. The article relies on initial experiences in France and Germany on decarbonization planning and implementation to define elements for managing dynamic adjustment issues. Such an adaptive pathway strategy should combine long-lived incentives, like a pre-announced escalating carbon price, to form consistent expectations, as well as adaptive policies to improve overall robustness and resilience. We sketch key elements of a monitoring process based on an ex ante definition of leading indicators that should be assessed regularly and combined with signposts and trigger values at the subsector level.

Policy relevance

These research questions are of special interest and urgency following the Paris Agreement in 2015. It calls on all countries to monitor the implementation of their national contributions and review their ambition regularly. The regular revision of decarbonization pathways constitute a great research opportunity to gather experiences on decarbonization pathway implementation and on dynamic management issues to progress towards an operational dynamic adaptive policy pathway mechanism.  相似文献   
15.
We have carried out a combined theoretical and experimental study of multicomponent diffusion in garnets to address some unresolved issues and to better constrain the diffusion behavior of Fe and Mg in almandine–pyrope-rich garnets. We have (1) improved the convolution correction of concentration profiles measured using electron microprobes, (2) studied the effect of thermodynamic non-ideality on diffusion and (3) explored the use of a mathematical error minimization routine (the Nelder-Mead downhill simplex method) compared to the visual fitting of concentration profiles used in earlier studies. We conclude that incorporation of thermodynamic non-ideality alters the shapes of calculated profiles, resulting in better fits to measured shapes, but retrieved diffusion coefficients do not differ from those retrieved using ideal models by more than a factor of 1.2 for most natural garnet compositions. Diffusion coefficients retrieved using the two kinds of models differ only significantly for some unusual Mg–Mn–Ca-rich garnets. We found that when one of the diffusion coefficients becomes much faster or slower than the rest, or when the diffusion couple has a composition that is dominated by one component (>75 %), then profile shapes become insensitive to one or more tracer diffusion coefficients. Visual fitting and numerical fitting using the Nelder-Mead algorithm give identical results for idealized profile shapes, but for data with strong analytical noise or asymmetric profile shapes, visual fitting returns values closer to the known inputs. Finally, we have carried out four additional diffusion couple experiments (25–35 kbar, 1,260–1,400 °C) in a piston-cylinder apparatus using natural pyrope- and almandine-rich garnets. We have combined our results with a reanalysis of the profiles from Ganguly et al. (1998) using the tools developed in this work to obtain the following Arrhenius parameters in D = D 0 exp{–[Q 1bar + (P–1)ΔV +]/RT} for D Mg* and D Fe*: Mg: Q 1bar = 228.3 ± 20.3 kJ/mol, D 0 = 2.72 (±4.52) × 10−10 m2/s, Fe: Q 1bar = 226.9 ± 18.6 kJ/mol, D 0 = 1.64 (±2.54) × 10−10 m2/s. ΔV + values were assumed to be the same as those obtained by Chakraborty and Ganguly (1992).  相似文献   
16.
The applicability of equilibrium models for humic-bound transport of toxic or radioactive metals is affected by kinetic processes leading to an increasing inertness of metal–humic complexes. The chemical background is not yet understood. It is widely believed that bound metals undergo an in-diffusion process within the humic colloids, changing from weaker to stronger binding sites. This work is focussed on the competition effect of Al(III) on complexation of Tb(III) or Eu(III) as analogues of trivalent actinides. By using ion exchange and spectroscopic methods, their bound fractions were determined for solutions of Al and humic acid that had been pre-equilibrated for different periods of time. Whilst the amount of bound Al remained unchanged, its blocking effect was found to increase over a time frame of 2 days, which corresponds to the kinetics of the increase in complex inertness reported in most pertinent studies. Thus, the derived “diffusion theory” turned out to be inapplicable, since it cannot explain an increase in competition for the “initial” sites. A delayed degradation of polynuclear species (as found for Fe) does not occur. Consequently, the temporal changes must be based on structural rearrangements in the vicinity of bound Al, complicating the exchange or access. Time-dependent studies by laser fluorescence spectroscopy (steady-state and time-resolved) yielded evidence of substantial alterations, which were, however, immediately induced and did not show any significant trend on the time scale of interest, suggesting that the stabilisation process is based on comparatively moderate changes.  相似文献   
17.
18.
Submarine landslides can generate local tsunamis with high run-ups, posing a hazard to human lives and coastal facilities. Both ancient (giant Storegga slide off Norwegian coast, 8200 B. P.) and recent (Papua New Guinea, 1998) events show high potential danger of tsunamigenic landslides and the importance of mitigation efforts. This contribution presents newly discovered landslides 70 km off Padang (Western Sumatra, Indonesia) based on recent bathymetry measurements. This highly populated city with over 750,000 inhabitants exhibits high tsunami vulnerability due to its very low elevation. We model tsunamis that might have been induced by the detected landslide events. Estimations of run-up heights extrapolated from offshore tsunami amplitudes for Padang and other locations in the northern Mentawai fore-arc basin yield maximum values of about 3 m. We also provide a systematic parametric study of landslide-induced tsunamis, which allows us to distinguish potentially dangerous scenarios for Padang. Inside the fore-arc basin, scenarios involving volumes of 0.5–25 km³ could endanger Padang. Apart from slide volume, the hazard distribution mainly depends on three landslide parameters: distance to Padang, water depth in the generation region, and slide direction.  相似文献   
19.
Freshwater discharge is one main element of the hydrological cycle that physically and biogeochemically connects the atmosphere, land surface, and ocean and directly responds to changes in pCO2. Nevertheless, while the effect of near-future global warming on total river runoff has been intensively studied, little attention has been given to longer-term impacts and thresholds of increasing pCO2 on changes in the partitioning of surface and subsurface flow paths across broad climate zones. These flow paths and their regional responses have a significant role for vegetation, soils, and nutrient leaching and transport. We present climate simulations for modern, near-future (850?ppm), far-future (1880?ppm), and past Late Cretaceous (1880?ppm) pCO2 levels. The results show large zonal mean differences and the displacement of flows from the surface to the subsurface depending on the respective pCO2 level. At modern levels the ratio of deeper subsurface to near-surface flows for tropical and high northern latitudes is 1:4.0 and 1:0.5, respectively, reflecting the contrast between permeable tropical soils and the areas of frozen ground in high latitudes. There is a trend toward increased total flow in both climate zones at 850?ppm, modeled to be increases in the total flow of 34 and 51%, respectively, with both zones also showing modest increases in the proportion of subsurface flow. Beyond 850?ppm the simulations show a distinct divergence of hydrological trends between mid- to high northern latitudes and tropical zones. While total wetting reverses in the tropics beyond 850?ppm due to reduced precipitation, with average zonal total runoff decreasing by 46% compared to the 850?ppm simulation, the high northern latitude zone becomes slightly wetter with the average zonal total runoff increasing by a further 3%. The ratio of subsurface to surface flows in the tropics remains at a level similar to the present day, but in the high northern latitude zone the ratio increases significantly to 1:1.6 due to the loss of frozen ground. The results for the high pCO2 simulations with the same uniform soil and vegetation cover as the Cretaceous are comparable to the results for the Cretaceous simulation, with higher fractions of subsurface flow of 1:5.4 and 1:5.6, respectively for the tropics, and 1:2.2 and 1:1.6, respectively for the high northern latitudes. We suggest that these fundamental similarities between our far future and Late Cretaceous models provide a framework of possible analogous consequences for (far-) future climate change, within which the integrated human impact over the next centuries could be assessed. The results from this modeling study are consistent with climate information from the sedimentary record which highlights the crucial role of terrestrial-marine interactions during past climate change. This study points to profound consequences for soil biogeochemical cycling, with different latitudinal expressions, passing of climate thresholds at elevated pCO2 levels, and enhanced export of nutrients to the ocean at higher pCO2.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号