首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   8篇
  国内免费   2篇
测绘学   35篇
大气科学   10篇
地球物理   43篇
地质学   67篇
海洋学   5篇
天文学   42篇
综合类   3篇
自然地理   2篇
  2022年   2篇
  2021年   1篇
  2020年   5篇
  2019年   4篇
  2018年   12篇
  2017年   18篇
  2016年   9篇
  2015年   14篇
  2014年   22篇
  2013年   12篇
  2012年   10篇
  2011年   16篇
  2010年   10篇
  2009年   7篇
  2008年   6篇
  2007年   6篇
  2006年   9篇
  2005年   8篇
  2004年   3篇
  2003年   10篇
  2002年   6篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有207条查询结果,搜索用时 31 毫秒
31.
The origin and movement of groundwater are the fundamental questions that address both the temporal and spatial aspects of ground water run and water supply related issues in hydrological systems. As groundwater flows through an aquifer, its composition and temperature may variation dependent on the aquifer condition through which it flows. Thus, hydrologic investigations can also provide useful information about the subsurface geology of a region. But because such studies investigate processes that follow under the Earth's shallow, obtaining the information necessary to answer these questions is not continuously easy. Springs, which discharge groundwater table directly, afford to study subsurface hydrogeological processes.The present study of estimation of aquifer factors such as transmissivity (T) and storativity (S) are vital for the evaluation of groundwater resources. There are several methods to estimate the accurate aquifer parameters (i.e. hydrograph analysis, pumping test, etc.). In initial days, these parameters are projected either by means of in-situ test or execution test on aquifer well samples carried in the laboratory. The simultaneous information on the hydraulic behavior of the well (borehole) that provides on this method, the reservoir and the reservoir boundaries, are important for efficient aquifer and well data management and analysis. The most common in-situ test is pumping test performed on wells, which involves the measurement of the fall and increase of groundwater level with respect to time. The alteration in groundwater level (drawdown/recovery) is caused due to pumping of water from the well. Theis (1935) was first to propose method to evaluate aquifer parameters from the pumping test on a bore well in a confined aquifer. It is essential to know the transmissivity (T = Kb, where b is the aquifer thickness; pumping flow rate, Q = TW (dh/dl) flow through an aquifer) and storativity (confined aquifer: S = bSs, unconfined: S = Sy), for the characterization of the aquifer parameters in an unknown area so as to predict the rate of drawdown of the groundwater table/potentiometric surface throughout the pumping test of an aquifer. The determination of aquifer's parameters is an important basis for groundwater resources evaluation, numerical simulation, development and protection as well as scientific management. For determining aquifer's parameters, pumping test is a main method. A case study shows that these techniques have been fast speed and high correctness. The results of parameter's determination are optimized so that it has important applied value for scientific research and geology engineering preparation.  相似文献   
32.
Groundwater levels in hard-rock areas in India have shown very large declines in the recent past. The situation is becoming more critical due to a paucity of rainfall, limited surface water resources and an increasing pattern of groundwater extraction in these areas. Consequently, the Ground Water Department with the aid of World Bank has implemented the water structuring programme to mitigate groundwater scarcity and to develop a viable solution for sustainable development in the region. The present study has been undertaken to assess the impact of artificial groundwater recharge structures in the hard-rock area of Rajasthan, India. In this study groundwater level data (pre-monsoon and post-monsoon) of 85 dug-wells are used, spread over an area of 413.59 km2. The weathered and fractured gneissic basement rocks act as major aquifer in the area. Spatial maps for pre- and post-monsoon groundwater levels were prepared using the kriging interpolation technique with best fitted semi-variogram models (Spherical, Exponential and Gaussian). The groundwater recharge is calculated spatially using the water level fluctuation method. The entire study period (2004–2011) is divided into pre- (2004–2008) and post-intervention (2009–2011) periods. Based on the identical nature of total monsoon rainfall, two combinations of average (2007 and 2009) and more than average (2006 and 2010) rainfall years are selected from the pre- and post-intervention periods for further comparisons. All of the water harvesting structures are grouped into the following categories: as anicuts (masonry overflow structure); percolation tanks; subsurface barriers; and renovation of earthen ponds/nadis. A buffer of 100 m around the intervention site is taken for assessing the influence of these structures on groundwater recharge. The relationship between the monsoon rainfall and groundwater recharge is fitted by power and exponential functions for the periods of 2004–2008 and 2008–2011 with R 2 values of 0.95 and 0.98, respectively. The average groundwater recharge is found to be 18% of total monsoon rainfall prior to intervention and it became 28% during the post-intervention period. About 70.9% (293.43 km2) of the area during average rainfall and more than 95% (396.26 km2) of the area during above-average rainfalls show an increase in groundwater recharge after construction of water harvesting structures. The groundwater recharge pattern indicates a positive impact within the vicinity of intervention sites during both average and above-average rainfall. The anicuts are found to be the most effective recharge structures during periods of above-average rainfall, while subsurface barriers are responded well during average rainfall periods. In the hard-rock terrain, water harvesting structures produce significant increases in groundwater recharge. The geo-spatial techniques that are used are effective for evaluating the response of different artificial groundwater recharge techniques.  相似文献   
33.
Pre‐stack seismic data are indicative of subsurface elastic properties within the amplitude versus offset characteristic and can be used to detect elastic rock property changes caused by injection. We perform time‐lapse pre‐stack 3‐D seismic data analysis for monitoring sequestration at Cranfield. The time‐lapse amplitude differences of Cranfield datasets are found entangled with time‐shifts. To disentangle these two characters, we apply a local‐correlation‐based warping method to register the time‐lapse pre‐stack datasets, which can effectively separate the time‐shift from the time‐lapse seismic amplitude difference without changing the original amplitudes. We demonstrate the effectiveness of our registration method by evaluating the inverted elastic properties. These inverted time‐lapse elastic properties can be reliably used for monitoring plumes.  相似文献   
34.
The deviatoric stress field are computed from the inversion of Gravitational Potential Energy (GPE) for the Indo-Eurasian plate collision region including the Himalaya and the Tibet Plateau. The resulting stress pattern in combination with stress and strain rates obtained by inverting, respectively, the focal mechanism solution of large earthquakes and GPS derived plate motions are used to study the nature of the present-day deformations. A narrow belt bordering the Himalayan collision zone from the south is characterized by strong compressive stresses. The variations in stress pattern along this belt coincide with arc-normal ridges extending into the Himalaya and are able to explain arc-parallel segmentation of seismicity. Gravitational collapse seems to play an important role in the southeastern Tibet Plateau. Depth sensitivity of the seismic derived stresses and GPS derived surface strain rates coupled with evidence of arcuate shaped high electrical conductivity favour strong ductile flow around the Eastern Himalaya Syntaxis (EHS) at mid-crustal depth. The deflection of crustal flow indicted by the viscous resistance offered by the rigid Sichuan basin adds to the traction stresses to cause clockwise rotation of the block around EHS.  相似文献   
35.
Tracking the migration of the CO2 plume is essential in order to better manage the operation of geologic sequestration of CO2. However, the large cost of most monitoring technologies, such as time-lapse seismic, limits their application. We investigated the application of a probabilistic history matching methodology using routine measurements of injection data, which are affected by the presence of large-scale heterogeneities, as an inexpensive alternative to track the migration of CO2 plume in an aquifer. The approach is demonstrated first through a synthetic example in which the ability to detect the presence of flow barriers was tested. In a second example, we applied our method to the In Salah field, one of the largest geological sequestration projects in the world, where the main direction of high permeability features was inferred. The accuracy and reproducibility of the results show that our approach for assisted history matching is an economic and viable option for plume monitoring during geologic CO2 sequestration.  相似文献   
36.
In this paper, an analytical expression for the deflection of a thin circular elastic plate resting on the Pasternak foundation is derived by adopting the strain energy approach. The parametric study is carried out to observe the location of the plate lift-off and the variation of the deflection profiles for comparing the variation pattern reported in the literature based on an approximate solution technique. It is found that the radial distance of the point of lift-off of the plate decreases with increase in the values of both the shear modulus and the modulus of subgrade reaction of the foundation soil; the reduction being more for their lower values. It is also observed that the variation in deflection of the plate at any radial distance due to change in soil subgrade conditions is significant for lower values of modulus of subgrade reaction.  相似文献   
37.
Snow cover depletion curve (SDC) is one of the important variables in snow hydrological applications, and these curves are very much required for snowmelt runoff modeling in a snowfed catchment. Remote sensing is an important source of snow cover area which is used for preparation of SDC. Snow cover maps produced by Moderate Resolution Imaging Spectroradiometer (MODIS) satellites are one of the best source of satellite-based snow cover area at a regular interval. Therefore, in this study, snow cover maps have been prepared for the years 2000?C2005 using MODIS data. The study area chosen viz. Beas basin up to Pandoh dam falls in western Himalayan region. For snowmelt runoff modeling, catchment is divided into number of elevation zones and SDC is required for each zone. When sufficient satellite data are not available due to cloud cover or due to some other reasons, then SDC can to be generated using temperature data. Under changed climate conditions also, modified SDC is required. Therefore, to have SDC under such situations, a relationship between snow cover area and cumulative mean temperature has been developed for each zone of the catchment. This procedure of having snow cover maps has two main purposes. First, it could potentially be used to generate snow cover maps when cloud-free satellite data are not available. Second, it can be used to generate snow-covered area in a new climate to see the impact of climate change on snowmelt runoff studies.  相似文献   
38.
Prajapati  Sanjay K.  Kumar  Ashok  Chopra  Sumer  Bansal  B. K. 《Natural Hazards》2013,69(3):1781-1801

We compiled available information of damages and other effects caused by the September 18, 2011, Sikkim–Nepal border earthquake from the print and electronic media, and interpreted them to obtain Modified Mercalli Intensity (MMI) at over 142 locations. These values are used to prepare the intensity map of the Sikkim earthquake. The map reveals several interesting features. Within the meizoseismal area, the most heavily damaged villages are concentrated toward the eastern edge of the inferred fault, consistent with eastern directivity. The intensities are amplified significantly in areas located along rivers, within deltas or on coastal alluvium such as mud flats and salt pans. We have also derived empirical relation between MMI and ground motion parameters using least square regression technique and compared it with the available relationships available for other regions of the world. Further, seismic intensity information available for historical earthquakes which have occurred in NE Himalayas along with present intensity has been utilized for developing attenuation relationship for NE India using two-step regression analyses. The derived attenuation relation is useful for assessing damage of a potential future earthquake (earthquake scenario-based planning purposes) for the northeast Himalaya region.

  相似文献   
39.
This investigation on the temperature of the interstellar warm ionized medium (WIM) is characterized by the number and energy balance of the constituents of the WIM complex plasma viz. H plasma (electrons/ions/neutral atoms) and graphite dust, having a size distribution, characterized by the MRN (Mathis, Rumpl and Nordsieck) power law. Ionization of neutral atoms, electron–ion recombination, photoemission of electrons from and accretion on the dust and cooling through electron collisional excitation, followed by radiative decay of atoms has been included in the analysis. An appropriate expression for the rate of emission and mean energy of photoelectrons emitted from the surface of positively charged dust particles has been used which takes into account the dependence of absorption efficiency on wavelength of the radiation, radius of the particle and spectral irradiance distribution. The results of the parametric analysis have been displayed graphically. It is seen that the consensus values of temperature, surface potential on the dust particles and electron/ion/neutral atom densities, characteristic of interstellar warm ionized medium can be explained on the basis of plausible combinations of the dust particle density n d and the parameter f ex α ex , where f ex is the fraction of the energy of the neutral gas atoms which gets irradiated, α ex n e n n is the number of the neutral atoms, which get excited per unit volume per unit time and n e (n n ) correspond to the density of electrons (neutral atoms).  相似文献   
40.
This paper presents the effects of soil layering on the characteristics of basin-edge induced surface waves and associated strain and aggravation factor. The simulated results revealed surface wave generation near the basin-edge. The first mode of induced Love wave was obtained in models having increasing velocity with depth and a large impedance contrast between the soil layers. Amplitude amplification or de-amplification of body waves was proportional to the impedance contrast between the soil layers. The average aggravation factor was inversely proportional to the impedance contrast between the soil layers in case of increasingvelocity models and proportional in case of decreasing-velocity basinedge models. On the other hand, the maximum strain was inversely proportional to the impedance contrast between the soil layers in both cases. On the average, strain was greater in case of increasing-velocity models but the average aggravation factor was greater in case of decreasingvelocity models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号