首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   8篇
  国内免费   2篇
测绘学   35篇
大气科学   10篇
地球物理   43篇
地质学   67篇
海洋学   5篇
天文学   42篇
综合类   3篇
自然地理   2篇
  2022年   2篇
  2021年   1篇
  2020年   5篇
  2019年   4篇
  2018年   12篇
  2017年   18篇
  2016年   9篇
  2015年   14篇
  2014年   22篇
  2013年   12篇
  2012年   10篇
  2011年   16篇
  2010年   10篇
  2009年   7篇
  2008年   6篇
  2007年   6篇
  2006年   9篇
  2005年   8篇
  2004年   3篇
  2003年   10篇
  2002年   6篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有207条查询结果,搜索用时 281 毫秒
21.
The micro-morphological shell characters (both in optical microscope and SEM) have been used to discriminate in between oyster’s sub-families Pycnodonteinae Stenzel 1959, Exogyrinae Vyalov 1936, Ostreinae Refinesque 1815 and Lophinae Vyalov 1936. These sub-families are represented by six constituent genera Phygraea (Phygarea) vesicularis (Lamarck 1806), Hyotissa semiplana (Sowerby1813), Curvostrea rouvellei (Coquand 1862), Ceratostreon pliciferum (Dujardin 1837), Agerostrea ungulata (Schlotheim 1813) and Rastellum (Arctostrea) pectinatum (Lamarck 1810) in the late Cretaceous (Maastrichtian) sediments of the Ariyalur area of Tamil Nadu, south India. The optical microscopic observations and SEM studies of the shells of these six genera clearly indicate that all the four sub-families consist of distinctive set of shell-microstructures. Sub-family Pycnodonteinae is characterized by predominance of vesicular, exogyrinae by prismatic, Ostreinae by cross foliated and Lophinae by foliated shell microstructures. Besides their characteristic shell microstructures, some additional microstructures are also visible in the shells of some of the genera of these four sub-families.  相似文献   
22.
The paper deals with a spatially homogeneous and anisotropic Bianchi type-I universe filled with two minimally interacting fluids; matter and holographic dark energy components. The nature of the holographic dark energy for Bianchi type-I space time is discussed. An exact solution to Einstein’s field equations in Bianchi type-I line element is obtained using the assumption of linearly varying deceleration parameter. Under the suitable condition, it is observed that the anisotropy parameter of the universe approaches to zero for large cosmic time and the coincidence parameter increases with increasing time. We established a correspondence between the holographic dark energy models with the generalised Chaplygin gas dark energy model. We also reconstructed the potential and dynamics of the scalar field which describes the Chaplygin cosmology. Solution of the field equations shows that a big rip type future singularity will occur for this model. It has been observed that the solutions are compatible with the results of recent observations.  相似文献   
23.
Land surface temperature (LST) shows negative correlation with the Normalized Difference Water Index (NDWI). Variability in the degree of correlation between LST and NDWI is ascribed to the physical character of specific geological material. Northwest India exhibits various landforms with different geological materials and has been broadly classified into four zones. Structural ridges of Aravalli Mountain of different rock compositions show strong variability both in NDWI (range 1.154, SD?=?0.0599) and in LST (range 24 °C and SD?=?2.54). Negative LST–NDWI correlation in this sector is partially linear. Western Thar Desert, having homogenous silica sand of lower emissivity shows least variability in its NDWI (range 0.88, SD?=?0.027) and moderate variability in its LST (20 °C, SD?=?2.389). Strong negative correlation of LST with NDWI is exhibited here. Band ratio Silica map in this sector shows strong positive correlation with LST. The eastern part of the Thar desert with mixed rocky knobs, and wind-blown sand shows low variability in NDWI (range 0.85) as well as LST (range 15 °C). Area in Indus–Bias–Sutlej River basin, dominated with fluvial sediments with lesser amount of windblown sediments, show low variability of NDWI (0.85) and moderate variability of LST (range 23 °C). In the areas, around Luni river higher NDWI trend is recorded, which is unrelated to present drainage trends indicating presence of palaeo-drainage. In addition, high NDWI and high LST bearing linear zones at places are interpreted as structural lineaments/faults based on pattern, moisture content and thermal high.  相似文献   
24.
Acta Geotechnica - Biochar has recently been gaining increasing attention as a stable and sustainable soil amendment material. However, the effect of biochar amendment on the desiccation behaviour...  相似文献   
25.
26.
In this work, we have considered the spatially homogeneous and anisotropic Bianchi type-II universe filled with two interacting fluids; dark matter and holographic dark energy components. Assuming the proportionality relation between one of the components of shear scalar and expansion scalar which yields time dependent deceleration parameter, an exact solution to Einstein’s field equations in Bianchi type-II line element is obtained. We have investigated geometric and kinematics properties of the model and the behaviour of the holographic dark energy. It is observed that the mean anisotropic parameter is uniform through the whole evolution of the universe and the coincidence parameter increases with increasing time. The solutions are also found to be in good agreement with the results of recent observations. We have applied the statefinder diagnostics method to study the behaviour of different stages of the universe and to differentiate the proposed dark energy model from the ΛCDM model. We have also established a correspondence between the holographic dark energy model and the tachyon scalar field dark energy model. We have reconstructed the potential and the dynamics of the tachyon scalar field, which describes accelerated expansion of the universe.  相似文献   
27.
Data collected during the Land Surface Processes Experiment (LASPEX) in a semi-arid region of the state of Gujarat in north-west India for a clear sky day (16 May 1997) are used to assess the performance of the atmospheric boundary-layer (ABL) and land- surface parameterizations in the fifth-generation Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) Mesoscale Model (MM5). The ABL turbulence parameterizations examined are the Blackadar scheme coupled to a simple soil slab model (SSM), and the Troen-Mahrt scheme coupled to SSM or to the more sophisticated Noah land-surface model (NSM). The comparison of several two-way nested high resolution (9-km) MM5 short term 24-h simulations indicate that, although the model is able to capture the trend in the observed data, the computed results deviate from observations. The NSM with a modest treatment of vegetation outperforms the SSM in capturing the observed daily variations in surface heat fluxes and aspects of ABL structure over the tropical land surface at local scales. Detailed analysis showed that, with the incorporation of observed local vegetation and soil characteristics, the NSM reproduced a realistic surface energy balance and near-surface temperature. It is further found that the coupling of the NSM with the Troen-Mahrt ABL scheme leads to excessive ABL mixing and a dry bias in the model simulations.  相似文献   
28.
The paper is based on the ionospheric variations in terms of vertical total electron content (VTEC) for the low solar activity period from May 2007 to April 2009 based on the analysis of dual frequency signals from the Global Positioning System (GPS) satellites recorded at ground stations Varanasi (Geographic latitude 25°16′ N, Longitude 82°59′ E), situated near the equatorial ionization anomaly crest and other two International GNSS Service (IGS) stations Hyderabad (Geographic latitude 17°20′ N, longitude 78°30′ E) and Bangalore (Geographic latitude 12°58′ N, longitude 77°33′ E) in India. We describe the diurnal and seasonal variations of total electron content (TEC), and the effects of a space weather related event i.e. a geomagnetic storm on TEC. The mean diurnal variation during different seasons is brought out. It is found that TEC at all the three stations is maximum during equinoctial months (March, April, September and October), and minimum during the winter months (November, December, January and February), while obtaining intermediate values during summer months (May, June, July and August). TEC shows a semi-annual variation. TEC variation during geomagnetic quiet as well as disturbed days of each month and hence for each season from May 2007 to April 2008 at Varanasi is examined and is found to be more during disturbed period compared to that in the quiet period. Monthly, seasonal and annual variability of GPS-TEC has been compared with those derived from International Reference Ionosphere (IRI)-2007 with three different options of topside electron density, NeQuick, IRI01-corr and IRI 2001. A good agreement is found between the GPS-TEC and IRI model TEC at all the three stations.  相似文献   
29.
The Solar Vector Magnetograph (SVM) at Udaipur Solar Observatory saw its first light in April 2005. The retrieval of vector fields from the imaging spectro-polarimetric observational data requires a substantial amount of computer post-processing. The GUI-based data reduction and analysis software have been developed to make the data processing pipeline user-friendly and less time-consuming. In this paper we describe these software packages.  相似文献   
30.
Impervious surfaces have a significant impact on urban runoff, groundwater, base flow, water quality, and climate. Increase in Anthropogenic Impervious Surfaces (AIS) for a region is a true representation of urban expansion. Monitoring of AIS in an urban region is helpful for better urban planning and resource management. Cost effective and efficient maps of AIS can be obtained for larger areas using remote sensing techniques. In the present study, extraction of AIS has been carried out using Double window Flexible Pace Search (DFPS) from a new index named as Normalized Difference Impervious Surface Index (NDAISI). NDAISI is developed by enhancing Biophysical Composition Index (BCI) in two stages using a new Modified Normalized Difference Soil Index (MNDSI). MNDSI has been developed from Band 7 and Band 8 (PAN) of Landsat 8 data. In comparison to existing impervious surface extraction methods, the new NDAISI approach is able to improve Spectral Discrimination Index (SDI) for bare soil and AIS significantly. Overall accuracy of mapping of AIS, using NDAISI approach has been found to be increased by nearly 23% when compared with existing impervious surface extraction methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号