首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  国内免费   1篇
大气科学   7篇
地质学   3篇
海洋学   4篇
综合类   1篇
  2021年   1篇
  2016年   2篇
  2014年   5篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2006年   1篇
  2000年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
11.
Temporal and spatial variability of phytoplankton pigment concentrations in the Japan Sea are described, using monthly mean composite images of the Coastal Zone Color Scanner (CZCS). In order to describe the seasonal changes of pigment concentration from the results of the empirical orthogonal function (EOF) analysis, we selected four areas in the south Japan Sea. The pigment concentrations in these areas show remarkable seasonal variations. Two annual blooms appear in spring and fall. The spring bloom starts in the Japan Sea in February and March, when critical depth (CRD) becomes equal to mixed layer depth (MLD). The spring bloom in the southern areas (April) occurs one month in advance of that in the northern areas (May). This indicates that the pigment concentrations in the southern areas may increase rapidly in comparison with the northern areas since the water temperature increases faster in spring in the southern than in the northern areas. The fall bloom appears first in the southwest region, then in the southeast and northeast regions, finally appearing in the northwest region. Fall bloom appears in November and December when MLD becomes equal to CRD. The fall bloom can be explained by deepening of MLD in the Japan Sea. The pigment concentrations in winter are higher than those in summer. The low pigment concentrations dominate in summer.  相似文献   
12.
Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll-a distribution in summer in the East China Sea during 1998–2007 was analyzed. Statistical analysis with K-means clustering technique allowed us to define the proper satellite chlorophyll-a concentration indicating the Changjiang Diluted Water (CDW). The spatial distributions of the higher satellite chlorophyll-a concentrations (>0.48 mg m−3) corresponded well with the distributions of lower salinity CDW (<30–32) every year. Interannual variation of the CDW area, indicated by the high satellite chlorophyll-a, correlated with the interannual variation of the Changjiang summer freshwater discharge. The correlation analysis indicated that the CDW spread eastward in the East China Sea with a time lag of 1 to 2 months after the discharge.  相似文献   
13.
The cloud phase composition of cold clouds in the Antarctic atmosphere is explored using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instruments for the period 2000--2006. We used the averaged fraction of liquid-phase clouds out of the total cloud amount at the cloud tops since the value is comparable in the two measurements. MODIS data for the winter months (June, July, and August) reveal liquid cloud fraction out of the total cloud amount significantly decreases with decreasing cloud-top temperature below 0oC. In addition, the CALIOP vertical profiles show that below the ice clouds, low-lying liquid clouds are distributed over ~20% of the area. With increasing latitude, the liquid cloud fraction decreases as a function of the local temperature. The MODIS-observed relation between the cloud-top liquid fraction and cloud-top temperature is then applied to evaluate the cloud phase parameterization in climate models, in which condensed cloud water is repartitioned between liquid water and ice on the basis of the grid point temperature. It is found that models assuming overly high cut-offs (》-40oC) for the separation of ice clouds from mixed-phase clouds may significantly underestimate the liquid cloud fraction in the winter Antarctic atmosphere. Correction of the bias in the liquid cloud fraction would serve to reduce the large uncertainty in cloud radiative effects.  相似文献   
14.
Compared to burn interiors, edges exhibit distinct biotic and abiotic conditions that include microclimate, wind speed, sunlight levels, soil composition, moisture content, nutrient availability, population density, and species diversity. This study characterized the landscapes in which burned forest edges formed in Samcheok, Korea. Over the study area, 500-m2 grid cells were generated to capture landscape characteristics. Grid cells intersecting burn boundary lines were designated as edge, while cells without these lines were classified as the interior of burned areas. Topographic variables including slope, elevation, topographic wetness index, solar radiation index, and proportions of fuel and land use types within grid cells were computed in a geographical information system (GIS). Correlation analysis with modified t-test and regression tree analysis were performed to explore the influences of landscape variables on edge formation with avoiding spatial autocorrelation problems. The results indicated that edges formed at low elevations with mild slopes, high topographic wetness, and low solar radiation. Edges were unlikely to form in areas dominated by Japanese red pines at low elevations. Moreover, heterogeneous land use/cover types contributed significantly to edge formation. Different forest management strategies for different landscape conditions can be more effective for enhancing resilience of forests to fire. Reducing susceptible fuel types might be effective at low elevations, while enhancing forest heterogeneity might be more effective at high elevations.  相似文献   
15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号