首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   637篇
  免费   25篇
测绘学   27篇
大气科学   45篇
地球物理   119篇
地质学   275篇
海洋学   40篇
天文学   122篇
综合类   2篇
自然地理   32篇
  2021年   15篇
  2020年   14篇
  2019年   12篇
  2018年   16篇
  2017年   18篇
  2016年   18篇
  2015年   14篇
  2014年   19篇
  2013年   25篇
  2012年   21篇
  2011年   33篇
  2010年   26篇
  2009年   35篇
  2008年   21篇
  2007年   12篇
  2006年   23篇
  2005年   13篇
  2004年   18篇
  2003年   10篇
  2002年   20篇
  2001年   10篇
  2000年   7篇
  1999年   7篇
  1998年   6篇
  1995年   8篇
  1994年   8篇
  1993年   6篇
  1990年   9篇
  1989年   6篇
  1988年   7篇
  1987年   12篇
  1986年   7篇
  1985年   6篇
  1984年   8篇
  1983年   10篇
  1982年   5篇
  1981年   11篇
  1980年   6篇
  1979年   11篇
  1978年   10篇
  1976年   10篇
  1975年   5篇
  1974年   5篇
  1973年   9篇
  1971年   4篇
  1970年   5篇
  1938年   4篇
  1937年   7篇
  1936年   4篇
  1933年   4篇
排序方式: 共有662条查询结果,搜索用时 15 毫秒
11.
Experiments exposing Type B calcium-, aluminum-rich inclusion (CAI)-like melts at high temperatures to high vacuum or reducing hydrogen-rich gas mixtures were used to determine the rates and consequences of elemental and isotopic fractionation by evaporation. Silicon and magnesium were found to evaporate much faster than calcium and aluminum, and the resulting residual liquid trajectories in composition space are reproduced via a thermodynamic model for the saturation vapor pressure of the evaporating species. Isotopic fractionations associated with evaporation were measured for magnesium. The resulting relationship between fraction of magnesium lost and enrichment of the residue in the heavy isotopes of magnesium follows a Rayleigh fractionation curve with a fractionation factor that is close to, but not exactly, the theoretically expected value. The rate of evaporation is found to be a strong function of temperature, oxygen fugacity, and melt composition, which can be understood and modeled in terms of the dependence of the saturation vapor pressures on these variables. The relationship between evaporation rate, which we measure, and calculated saturation vapor involves empirical evaporation coefficients that we find to be significantly less than one (∼0.1). Analytical and numerical models are used to characterize how diffusion in both the melt and in the surrounding gas affects evaporation rates and the degree of chemical and isotopic fractionation. The experimental data and theoretical considerations are combined to give a parameterization of the rates and consequences of evaporation of Type B CAI-like liquids, which is then used to translate the measured isotopic fractionation of Type B CAIs into constraints on their thermal history. Cooling rates of the order of 10°C per hour are indicated.  相似文献   
12.
The enantiomeric and carbon-isotopic composition of the amino acid isovaline have been analyzed in several samples of the Murchison meteorite and one sample of the Murray meteorite. l-Enantiomeric excesses of the amino acid were found to range from 0 to 15.2%, varying significantly both between meteorite stones and at short distances within a single stone. The upper limit of this range is the largest enantiomeric excess measured to date for a biologically rare meteoritic amino acid and raises doubts that circularly polarized light irradiation could have been the sole cause of amino acids chiral asymmetry in meteorites. Individual d- and l-isovaline δ13C values ware found to be about +18‰, with no significant differences between the two enantiomers to suggest terrestrial contamination. The amino acid relative abundance also varied between samples, with isovaline/alanine ratios of 0.5 to 6.5. X-ray diffraction analyses of contiguous meteorite fragments suggest a possible correlation between isovaline and hydrous silicates abundances.  相似文献   
13.
In this paper we present densely sampled fumarole temperature data, recorded continuously at a high-temperature fumarole of Mt. Merapi volcano (Indonesia). These temperature time series are correlated with continuous records of rainfall and seismic waveform data collected at the Indonesian–German multi-parameter monitoring network. The correlation analysis of fumarole temperature and precipitation data shows a clear influence of tropical rain events on fumarole temperature. In addition, there is some evidence that rainfall may influence seismicity rates, indicating interaction of meteoric water with the volcanic system. Knowledge about such interactions is important, as lava dome instabilities caused by heavy-precipitation events may result in pyroclastic flows. Apart from the strong external influences on fumarole temperature and seismicity rate, which may conceal smaller signals caused by volcanic degassing processes, the analysis of fumarole temperature and seismic data indicates a statistically significant correlation between a certain type of seismic activity and an increase in fumarole temperature. This certain type of seismic activity consists of a seismic cluster of several high-frequency transients and an ultra-long-period signal (<0.002 Hz), which are best observed using a broadband seismometer deployed at a distance of 600 m from the active lava dome. The corresponding change in fumarole temperature starts a few minutes after the ultra-long-period signal and simultaneously with the high-frequency seismic cluster. The change in fumarole temperature, an increase of 5 °C on average, resembles a smoothed step. Fifty-four occurrences of simultaneous high-frequency seismic cluster, ultra-long period signal and increase of fumarole temperature have been identified in the data set from August 2000 to January 2001. The observed signals appear to correspond to degassing processes in the summit region of Mt. Merapi.  相似文献   
14.
This study presents a spatiotemporal analysis tool, called Shyska. This tool allows the simulation and prediction of flash floods in semiarid basins. Shyska has been developed by Geographical Information System (GIS)‐embedded functions, allowing the integration of hydrometeorological information from modern technologies of data acquisition in real time. A Digital Elevation Model (DEM) is used in order to obtain the relevant parameters from the integrated rainfall‐runoff models. Some of its most relevant modules and methodology employed for its development are described. Case studies in basins of south‐east Spain illustrate the applicability of the proposed techniques.  相似文献   
15.
16.
A high-altitude peat sequence from the heart of the Spanish Central System (Gredos range) was analysed through a multi-proxy approach to determine the sensitivity of high-mountain habitats to climate, fire and land use changes during the last seven hundred years, providing valuable insight into our understanding of the vegetation history and environmental changes in a mountain pass close to a traditional route of transhumance. The pollen data indicate that the vegetation was dominated by shrublands and grasslands with scattered pines in high-mountain areas, while in the valleys cereals, chestnut and olive trees were cultivated. Strong declines of high-mountain pines percentages are recorded at 1540, 1675, 1765, 1835 and 1925 cal AD, which may be related to increasing grazing activities and/or the occurrence of anthropogenic fires. The practice of mountain summer farming and transhumance deeply changed and redesigned the landscape of the high altitudes in central Spain (Gredos range) since the Middle Ages, although its dynamics was influenced in some way by climate variability of the past seven centuries.  相似文献   
17.
International Journal of Earth Sciences - In the present study we investigate the microstructural development in mullite, quartz and garnet in an anatectic migmatite hosted within a Grenvillian-age...  相似文献   
18.
We report on how visual realism might influence map-based route learning performance in a controlled laboratory experiment with 104 male participants in a competitive context. Using animations of a dot moving through routes of interest, we find that participants recall the routes more accurately with abstract road maps than with more realistic satellite maps. We also find that, irrespective of visual realism, participants with higher spatial abilities (high-spatial participants) are more accurate in memorizing map-based routes than participants with lower spatial abilities (low-spatial participants). On the other hand, added visual realism limits high-spatial participants in their route recall speed, while it seems not to influence the recall speed of low-spatial participants. Competition affects participants’ overall confidence positively, but does not affect their route recall performance neither in terms of accuracy nor speed. With this study, we provide further empirical evidence demonstrating that it is important to choose the appropriate map type considering task characteristics and spatial abilities. While satellite maps might be perceived as more fun to use, or visually more attractive than road maps, they also require more cognitive resources for many map-based tasks, which is true even for high-spatial users.  相似文献   
19.
Sellers  Chester Andrew  Buján  Sandra  Miranda  David 《Landslides》2021,18(12):3963-3977

The regions of Central and South America most susceptible to the occurrence of landslides will become even more vulnerable in the context of climate change. The Josefina disaster, in 1993, demonstrated both the vulnerability of local infrastructures and communities in the Paute River basin (Ecuador). Since this natural phenomena, several landslide inventories and susceptibility studies were developed, revealing the vulnerability of the Paute River basin to unstable terrain and the need for further studies throughout the basin. Despite this, no studies have been done since then to update the information generated. This paper describes a Mobile Application for Regional Landslide Inventories (MARLI), a simple but efficient open-access platform to report landslide events using the Open Data Kit system. Its design makes reporting fast, simple and cost-effective with an added benefit, and a specialized knowledge is not required for its use. MARLI was tested for the collection of landslides in Cuenca (Ecuador). From the data taken in the field, it was possible to analyze the performance and suitability of collected data and compare the results with regional inventories in the same area. Additionally, these results can be used for the elaboration and update of large-scale inventories or the training of automatic identification systems of landslides and later evaluation of their precision in a small-medium scale. Likewise, this product constitutes a fundamental input for the formulation of mitigation strategies, to formulate the appropriate response and in time, also the elaboration of reconstruction plans before the increase in the occurrence of such phenomena.

  相似文献   
20.
Field-based fire studies in the equatorial Andes indicate that fires are strongly associated with biophysical and anthropogenic variables. However, fire controls and fire regimes at the regional scale remain undocumented. Therefore, this paper describes spatial and temporal burned-area patterns, identifies biophysical and anthropogenic fire drivers, and quantifies fire probability across 6° of latitude and 3° of longitude in the equatorial Andes. The spatial and temporal burned-area analysis was carried out based on 18 years(2001-2018) of the MCD64 A1 MODIS burned-area product. Climate, topography, vegetation, and anthropogenic variables were integrated in a logistic regression model to identify the significance of explanatory variables and determine fire occurrence probability. A total of 5779 fire events were registered during the 18 years of this study, located primarily along the western cordillera of the Andes and spreading from North to South. Eighty-eight percent of these fires took place within two fire hotspots located in the northwestern and southwestern corners of the study area. Ninety-nine percent occurred during the second part of the year, between June and December. The largest density of fires was primarily located on herbaceous vegetation and shrublands. Results show that mean monthly temperature, precipitation and NDVI during the prefire season, the location of land cover classes such as forest and agriculture, distance to roads and urban areas, slope, and aspect were the most important determinants of spatial and temporal fire distribution. The logistic regression model achieved a good accuracy in predicting fire probability(80%). Probability was higher in the southwestern and northern corners of the study area, and lower towards the north in the western and eastern piedmonts of the Andes. This analysis contributes to the understanding of fires in mountains within the tropics. The results here presented have the potential to contribute to fire management and control in the region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号