首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   22篇
测绘学   15篇
大气科学   18篇
地球物理   71篇
地质学   141篇
海洋学   34篇
天文学   21篇
综合类   2篇
自然地理   26篇
  2022年   2篇
  2021年   10篇
  2020年   8篇
  2019年   9篇
  2018年   13篇
  2017年   17篇
  2016年   16篇
  2015年   11篇
  2014年   13篇
  2013年   17篇
  2012年   19篇
  2011年   25篇
  2010年   20篇
  2009年   23篇
  2008年   15篇
  2007年   7篇
  2006年   16篇
  2005年   10篇
  2004年   9篇
  2003年   4篇
  2002年   13篇
  2001年   7篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1990年   6篇
  1988年   4篇
  1987年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1976年   3篇
  1974年   2篇
  1972年   1篇
排序方式: 共有328条查询结果,搜索用时 0 毫秒
71.
Multi-scale interactions between El Niño–Southern Oscillation and the Boreal Winter Monsoon contribute to rainfall variations over Malaysia. Understanding the physical mechanisms that control these spatial variations in local rainfall is crucial for improving weather and climate prediction and related risk management. Analysis using station observations and European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) reanalysis reveals a significant decrease in rainfall during El Niño (EL) and corresponding increase during La Niña particularly north of 2°N over Peninsular Malaysia (PM). It is noted that the southern tip of PM shows a small increase in rainfall during El Niño although not significant. Analysis of the diurnal cycle of rainfall and winds indicates that there are no significant changes in morning and evening rainfall over PM that could explain the north–south disparity. Thus, we suggest that the key factor which might explain the north–south rainfall disparity is the moisture flux convergence (MFC). During the December to January (DJF) period of EL years, except for the southern tip of PM, significant negative MFC causes drying as well as suppression of uplift over most areas. In addition, lower specific humidity combined with moisture flux divergence results in less moisture over PM. Thus, over the areas north of 2°N, less rainfall (less heavy rain days) with smaller diurnal rainfall amplitude explains the negative rainfall anomaly observed during DJF of EL. The same MFC argument might explain the dipolar pattern over other areas such as Borneo if further analysis is performed.  相似文献   
72.
Investigating the relationships between climate extremes and crop yield can help us understand how unfavourable climatic conditions affect crop production. In this study, two statistical models, multiple linear regression and random forest, were used to identify rainfall extremes indices affecting wheat yield in three different regions of the New South Wales wheat belt. The results show that the random forest model explained 41–67% of the year-to-year yield variation, whereas the multiple linear regression model explained 34–58%. In the two models, 3-month timescale standardized precipitation index of Jun.–Aug. (SPIJJA), Sep.–Nov. (SPISON), and consecutive dry days (CDDs) were identified as the three most important indices which can explain yield variability for most of the wheat belt. Our results indicated that the inter-annual variability of rainfall in winter and spring was largely responsible for wheat yield variation, and pre-growing season rainfall played a secondary role. Frequent shortages of rainfall posed a greater threat to crop growth than excessive rainfall in eastern Australia. We concluded that the comparison between multiple linear regression and machine learning algorithm proposed in the present study would be useful to provide robust prediction of yields and new insights of the effects of various rainfall extremes, when suitable climate and yield datasets are available.  相似文献   
73.
Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many Mediterranean-climate salt marshes along southern California, USA coast import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are potentially important for marsh stability. We calculated tidal creek sediment fluxes within a highly modified, sediment-starved, 1.5-km2 salt marsh (Seal Beach) and a less modified 1-km2 marsh (Mugu) with fluvial sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12,000 and 8800 kg in a western and eastern channel. Western channel storm imports offset 8700 kg exported during 2 months of dry weather, while eastern channel storm imports augmented 9200 kg imported during dry weather. During the storm at Mugu, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 1–2 mm near creek levees. An exceptionally high tide sequence yielded 4.4 g/s mean sediment flux, importing 1700 kg: 20 % of Mugu’s dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are geomorphically stable during dry weather conditions. Results suggest storms and high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea level rise scenarios, results suggest that balanced sediment fluxes lead to marsh elevational instability based on estimated mineral sediment deficits.  相似文献   
74.
Abstract– To better explain the unusual distribution and relative abundances of several 6‐ and 7‐carbon amino acids found in meteorites, their thermodynamic properties were studied using accurate ab initio techniques. In addition to optimized structures and relative energies, vibrational frequency and thermochemical analysis of different diastereomers were performed at temperatures relevant to conditions of synthesis of these amino acids in meteorites. The results of calculations were compared with the measured content of the amino acids in the Murchison meteorite. The distribution of several longer chain amino acids in meteorites seems to point to at least some thermodynamic control in their formation. For diastereomeric compounds, on the other hand, the comparison suggests that their synthetic conditions, or those of their precursors, were far from thermodynamic equilibrium.  相似文献   
75.
Extensive (ca. 50,000 km2) shallow-marine platforms (< 250 m) off northern (34°S) and southern (48°S) New Zealand, and more local areas of shelf between, are blanketed by skeletal carbonate sediments > 70% CaCO3), despite proximity to a tectonically active plate margin. In these regions the terrigenous sediment supply is presently low, and growth of epibenthos is fostered by firm substrates (rock, gravels, shells, seaweeds) and the generally energetic nature and high nutrient levels of open-shelf waters. Rapid transition into adjacent terrigenous-dominated facies is characteristic. Irrespective of water depth, the carbonates are coarse-grained and fragmental; carbonate mud is rare. Calcite dominates over aragonite. High-Mg calcite, widespread off northern New Zealand, is rare in the south. Skeletal material is dominated by bryozoans and bivalve molluscs, with significant local contributions from foraminifers, barnacles, calcareous red algae and echinoderms. The name bryomol is suggested for this distinctive temperate-region skeletal carbonate facies, which can be usefully subdivided based on dominant zoarial growth forms of the bryozoan component, known to be habitat-related. Bioerosion is an important mechanism of skeletal fragmentation and degradation. Many grains, especially aragontic bivalves, are infested by endolithic borers and have low preservation potential. Ages of skeletal material in the surficial deposits range from more than 20,000 years B.P. to modern, which is consistent with both low rates of carbonate production and sediment accumulation, and the wide range in preservation state of grains. Some data suggest that the skeletal carbonates are dispersed and mixed mainly during infrequent movement of sand ribbons, sand waves and sand sheets driven by storm-assisted tidal flows. Tracts of modern, palimpsest and relict carbonates can occur in juxtaposition.

The facies characteristics of the New Zealand shelf carbonate deposits contrast significantly with those of the classical Bahaman-type carbonate model. However, they are similar to those reported from many other mid- to high-latitude carbonate shelves, and afford good analogues for most onland occurrences of New Zealand Cenozoic limestones.  相似文献   

76.
Diffusion of ions in sea water and in deep-sea sediments   总被引:3,自引:0,他引:3  
The tracer-diffusion coefficient of ions in water, Dj0, and in sea water, Dj1, differ by no more than zero to 8 per cent. When sea water diffuses into a dilute solution of water, in order to maintain the electro-neutrality, the average diffusion coefficients of major cations become greater but of major anions smaller than their respective Dj1 or Dj0 values. The tracer diffusion coefficients of ions in deep-sea sediments, Dj,sed., can be related to Dj1 by Dj,sed. = Dj1 · αθ2, where θ is the tortuosity of the bulk sediment and a a constant close to one.  相似文献   
77.
The influence of vorticity and rheology of matrix material on the development of shape-preferred orientation (SPO) of populations of rigid objects was experimentally studied. Experiments in plane strain monoclinic flow were performed to model the fabric development of two populations of rectangular rigid objects with object aspect ratios (Rob) 2 and 3. The density of the rigid object populations was 14% of the total area. Objects were dispersed in a Newtonian and a non-Newtonian, power law matrix material with a power law exponent n of 1.2. The kinematic vorticity number (Wn) of the plane strain monoclinic flow was 1, 0.8 and 0.6 with finite simple shear strain of 4.6, 3.0 and 0.9, respectively. In experiments with Rob=3, the SPO is strongly influenced by Wn and the material properties of the matrix. Deformation of a power law matrix material and low Wn resulted in a stronger SPO than deformation of a linear viscous matrix and high Wn. Strain localization coupled with particle interaction plays a significant role in the development of a shape-preferred orientation. High strain simple shear zones separate trains of rigid objects that are surrounded by low strain zones with Wn lower than the bulk Wn. In fabrics involving populations of objects with Rob=2, rheology of the matrix materials does not systematically influence the intensity of the SPO.  相似文献   
78.
This paper presents a land use and land cover (LULC) classification approach that accounts landscape heterogeneity. We addressed this challenge by subdividing the study area into more homogeneous segments using several biophysical and socio-economic factors as well as spectral information. This was followed by unsupervised clustering within each homogeneous segment and supervised class assignment. Two classification schemes differing in their level of detail were successfully applied to four landscape types of distinct LULC composition. The resulting LULC map fulfills two major requirements: (1) differentiation and identification of several LULC classes that are of interest at the local, regional, and national scales, and (2) high accuracy of classification. The approach overcomes commonly encountered difficulties of classifying second-level classes in large and heterogeneous landscapes. The output of the study responds to the need for comprehensive LULC data to support ecosystem assessment, policy formulation, and decision-making towards sustainable land resources management.  相似文献   
79.
80.
We present microstructural and chemical analyses of chemically zoned and recrystallized plagioclase grains in variably strained samples of a naturally deformed anorthosite–leucogabbro, southern West Greenland. The recorded microstructures formed in the presence of fluids at mid-crustal conditions (620–640 °C, 7.4–8.6 kbar). Recrystallized plagioclase grains (average grain size 342 μm) with a random crystallographic orientation are volumetrically dominant in high-strain areas. They are characterized by asymmetric chemical zoning (An80 cores and An64 rims) that are directly associated with areas exhibiting high amphibole content and phase mixing. Analyses of zoning indicate anisotropic behaviour of bytownite plagioclase with a preferred replacement in the $ \left\langle {0 10} \right\rangle $ direction and along the (001) plane. In areas of high finite strain, recrystallization of plagioclase dominantly occurred by bulging recrystallization and is intimately linked to the chemical zoning. The lack of CPO as well as the developed asymmetric zoning can be explained by the activity of grain boundary sliding accommodated by dissolution and precipitation creep (DPC). In low-strain domains, grain size is on average larger and the rim distribution is not related to the inferred stress axes indicating chemically induced grain replacement instead of stress-related DPC. We suggest that during deformation, in high-strain areas, pre-existing phase mixture and stress induced DPC-caused grain rotations that allowed a deformation-enhanced heterogeneous fluid influx. This resulted in local plagioclase replacement through interface-coupled dissolution and precipitation and chemically induced grain boundary migration, accompanied by bulging recrystallization, along with neocrystallization of other phases. This study illustrates a strong interaction and feedback between physical and chemical processes where the amount of stress and fluids dictates the dominant active process. The interaction is a cause of deformation and external fluid infiltration with a result of strain localization and chemical re-equilibration at amphibolite facies conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号