首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   3篇
  国内免费   4篇
测绘学   10篇
大气科学   10篇
地球物理   26篇
地质学   61篇
海洋学   6篇
天文学   67篇
综合类   1篇
自然地理   6篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   5篇
  2019年   4篇
  2018年   12篇
  2017年   11篇
  2016年   15篇
  2015年   10篇
  2014年   7篇
  2013年   8篇
  2012年   12篇
  2011年   14篇
  2010年   10篇
  2009年   18篇
  2008年   4篇
  2007年   5篇
  2006年   5篇
  2005年   7篇
  2004年   3篇
  2003年   1篇
  2002年   7篇
  2001年   4篇
  1999年   2篇
  1998年   3篇
  1995年   1篇
  1993年   2篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1985年   1篇
  1980年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有187条查询结果,搜索用时 31 毫秒
21.
We study the formation of the absorption features, called the cyclotron–annihilation lines, in the γ-spectra of the neutron stars (pulsars), owing to the fundamental quantum-electrodynamic effect of the one–photon pair creation in magnetized vacuum. As a result, we substantiate a new method for the determination of the neutron star magnetic fields B based on measuring the interval between the main annihilation and the first cyclotron–annihilation absorption lines. It is found that these lines may be easily resolved, and, consequently, the method is surely applicable if the following conditions are satisfied. (i) A γ-source has to be compact enough and located near a star, but not close to its magnetic poles. For instance, it may be a disc in the plane of a star magnetic equator with latitudinal angular width less than     and radial extent up to 25 per cent of the star radius. (ii) The source is to produce detectable γ-radiation at large angles ≳60° to the local magnetic field. Being situated in a closed field line region and having a broad radiation pattern, such a source is not what is usually considered in the context of the polar cap and outer gap models of the pulsar γ-emission dealing with open field lines only. (iii) Magnetic field strength must lie in a certain narrow interval with the centre at  ∼(3–4) × 1012  G. Its width depends on the star orientation and disc radial extend and in the most favourable case is about 20–30 per cent of its lower boundary. Finally, the influence of the star rotation on this method employment is considered and new possibilities arising from forthcoming polarization observations are briefly discussed.  相似文献   
22.
One interesting method of constraining the dense matter Equations of State is to measure the advancement of the periastron of the orbit of a binary radio pulsar (when it belongs to a double neutron star system). There is a great deal of interest on applicability of this procedure to the double pulsar system PSR J0737-3039 (A/B). Although the above method can be applied to PSR A in future within some limitations, for PSR B this method cannot be applied. On the other hand, the study of genesis of PSR B might be useful in this connection and its low mass might be an indication that it could be a strange star.  相似文献   
23.
Mildly deformed granitoids exposed around Bilgi in the northernmost part of the eastern Dharwar craton are divided into two groups viz. granodiorites and monzogranites. The granodiorites contain microgranular enclaves and amphibolite xenoliths, and show low-Al TTG affinity with high SiO2 (71–74 %), Na2O, Y and Sr/Y, moderate to moderately high Mg#, Cr and Ni, low to moderate LILE, and low Nb and Ta. However, compared to similar TTGs from different cratons the Bilgi granodiorites have distinctly higher K2O, K2O/Na2O, Rb and lower REE and Th. The amphibolite xenoliths are characterized by variable enrichment of K2O, Rb, Ba and Th and depletion of Ti, Zr and P compared to MORB. The microgranular enclaves are quartz diorite to granodiorite in composition with high Mg, Ni and Cr, and compared to MORB, are enriched in LILE and depleted in Ti and Y. The monzogranites, compared to the granodiorites, display higher SiO2, K2O and Rb with lower Mg#, although still maintaining the high Na2O, Ni and Cr and low REE character. The Bilgi granodiorites are explained as transitional TTGs late synkinematic with respect to regional deformation. Geochemical signatures and regional geological set up suggest that they are probably derived from partial melting of a highly depleted slab material (metabasalt) followed by variable contamination or assimilation of intermediate crustal rocks in a subduction zone set up. Late stage fluid activity on the granodioritic magma is probably responsible for the generation of monzogranites. The amphibolite xenoliths predate the granodiorites and possibly represent fragments of a schist belt carried away by the granitic magma. They are probably island arc basalt derived from mantle source that has been metasomatized by slab-derived fluids. The microgranular enclaves are coeval with the Bilgi granodiorites and also likely to be island arc magmas derived from mantle variably enriched in slab-derived and within-plate components.  相似文献   
24.
We study the effects of temperature on strange stars. It is found that the maximum mass of the star decreases with the increase of temperature, as at high temperatures the equations of state become softer. Moreover, if the temperature of a strange star increases, keeping its baryon number fixed, its gravitational mass increases and its radius decreases. This leads to a limiting temperature, where it turns into a black hole. These features are the result of a combined effect of the change of gluon mass and the quark distribution with temperature. We report on a new type of radial oscillation of strange stars, driven by what we call 'chromothermal' instability. We also discuss the relevance of our findings in the astrophysics of core collapse supernovae and gamma-ray bursts.  相似文献   
25.
We study the dynamical structure of a cooling dominated rotating accretion flow around a spinning black hole. We show that non-linear phenomena such as shock waves can be studied in terms of only three flow parameters, namely the specific energy     , the specific angular momentum (λ) and the accretion rate     of the flow. We present all possible accretion solutions. We find that a significant region of the parameter space in the     plane allows global accretion shock solutions. The effective area of the parameter space for which the Rankine–Hugoniot shocks are possible is maximum when the flow is dissipation-free. It decreases with the increase of cooling effects and finally disappears when the cooling is high enough. We show that shock forms further away when the black hole is rotating compared to the solution around a Schwarzschild black hole with identical flow parameters at a large distance. However, in a normalized sense, the flow parameters for which the shocks form around the rotating black holes are produced shocks closer to the black hole. The location of the shock is also dictated by the cooling efficiency in that higher the accretion rate     , the closer is the shock location. We believe that some of the high-frequency quasi-periodic oscillations may be due to the flows with higher accretion rate around the rotating black holes.  相似文献   
26.
In fluvial sedimentology, bed sediment entrainment by streamflow has a decisive role in controlling several fluvial processes. Owing to its huge practical importance, the subject has been painstakingly explored for over a century. However, a detailed understanding of the mechanism of the bed sediment entrainment phenomenon achieved hitherto is far from complete. The central theme of bed sediment entrainment is occupied by the sediment entrainment threshold, which varies enormously in its qualitative definition, identification and quantification encompassing a broad range of spatiotemporal scales. This article presents the state of the science of the entrainment of non‐cohesive bed sediments under a steady‐unidirectional streamflow. It begins with the diverse definitions and representations of the entrainment threshold criterion from both qualitative and quantitative perspectives, scrutinising its suitability and ambit of applicability. Then, the effects of energetic factors that drive the entrainment threshold criterion are critically appraised. The indispensable mechanisms of bed sediment entrainment, including the theoretical background and modelling strategies, the role of turbulent bursting phenomenon and the phenomenological perspective into the origin of the scaling laws of sediment entrainment, are explained. Throughout the article, special emphasis is given to the strengths and weaknesses of the current state of the science. In addition, a deliberate attempt is made to invoke the thought‐provoking ideas on the multifarious features of bed sediment entrainment. Finally, the innovative perspectives on the bed sediment entrainment are provided and the concluding remarks are made, elucidating the major challenges and suggesting the prospective ways to resolve them as a future scope of research.  相似文献   
27.
Regional scale urban built-up areas and surface urban heat islands (SUHI) are important for urban planning and policy formation. Owing to coarse spatial resolution (1000 m), it is difficult to use Moderate Resolution Imaging Spectroradiometer (MODIS) Land surface temperature (LST) products for mapping urban areas and visualization, and SUHI-related studies. To overcome this problem, the present study downscaled MODIS (1000 m resolution)-derived LST to 250 m resolution to map and visualize the urban areas and identify the basic components of SUHI over 12 districts of Punjab, India. The results are compared through visual interpretation and statistical procedure based on similarity analysis. The increased entropy value in the downscaled LST signifies higher information content. The temperature variation within the built-up and its environs is due to difference in land use and is depicted better in the downscaled LST. The SUHI intensity analysis of four cities (Ludhiana, Patiala, Moga and Vatinda) indicates that mean temperature in urban built-up core is higher (38.87 °C) as compared to suburban (35.85 °C) and rural (32.41 °C) areas. The downscaling techniques demonstrated in this paper enhance the usage of open-source wide swath MODIS LST for continuous monitoring of SUHI and urban area mapping, visualisation and analysis at regional scale. Such initiatives are useful for the scientific community and the decision-makers.  相似文献   
28.
The performance of RegCM4 for seasonal-scale simulation of winter circulation and associated precipitation over the Western Himalayas (WH) is examined. The model simulates the circulation features and precipitation in three distinct precipitation years reasonably well. It is found that the RMSE decreases and correlation coefficient increases in the precipitation simulations with the increase of model horizontal resolutions. The ETS and POD for the simulated precipitation also indicate that the performance of model is better at 30 km resolution than at 60 and 90 km resolutions. This improvement comes due to better representation of orography in the high-resolution model in which sharp orography gradient in the domain plays an important role in wintertime precipitation processes. A comparison of model-simulated precipitation with observed precipitation at 17 station locations has been carried out. Overall, the results suggest that 30 km model produced better skill in simulating the precipitation over the WH and this model is a useful tool for further regional downscaling studies.  相似文献   
29.
Bioturbation is a typically small scale yet potentially significant geological process altering rock properties by reworking. For many years, bioturbation studies found application in exploration geology to estimate paleobathymetry, interpreting depositional environment and identifying key stratigraphic surfaces. These act as vital inputs to the geological models, for determination of source rock potential, reservoir quality and modeling of petroleum systems. Recently geologists extended the application of bioturbation studies to address production related challenges. Recognizing the bioturbation effects and incorporating them in reservoir simulation models can improve production predictions and enhanced oil recovery operations. This paper discusses bioturbation and its effects on reservoir quality, its performance and production.  相似文献   
30.
In the NW Sub-Himalayan frontal thrust belt in India, seismic interpretation of subsurface geometry of the Kangra and Dehradun re-entrant mismatch with the previously proposed models. These procedures lack direct quantitative measurement on the seismic profile required for subsurface structural architecture. Here we use a predictive angular function for establishing quantitative geometric relationships between fault and fold shapes with ‘Distance–displacement method’ (D–d method). It is a prognostic straightforward mechanism to probe the possible structural network from a seismic profile. Two seismic profiles Kangra-2 and Kangra-4 of Kangra re-entrant, Himachal Pradesh (India), are investigated for the fault-related folds associated with the Balh and Paror anticlines. For Paror anticline, the final cut-off angle \(\beta =35{^{\circ }}\) was obtained by transforming the seismic time profile into depth profile to corroborate the interpreted structures. Also, the estimated shortening along the Jawalamukhi Thrust and Jhor Fault, lying between the Himalayan Frontal Thrust (HFT) and the Main Boundary Thrust (MBT) in the frontal fold-thrust belt, were found to be 6.06 and 0.25 km, respectively. Lastly, the geometric method of fold-fault relationship has been exercised to document the existence of a fault-bend fold above the Himalayan Frontal Thrust (HFT). Measurement of shortening along the fault plane is employed as an ancillary tool to prove the multi-bending geometry of the blind thrust of the Dehradun re-entrant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号