首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   3篇
  国内免费   5篇
测绘学   9篇
大气科学   32篇
地球物理   48篇
地质学   127篇
海洋学   5篇
天文学   33篇
综合类   2篇
自然地理   1篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   10篇
  2017年   12篇
  2016年   16篇
  2015年   9篇
  2014年   16篇
  2013年   20篇
  2012年   28篇
  2011年   7篇
  2010年   8篇
  2009年   10篇
  2008年   11篇
  2007年   22篇
  2006年   7篇
  2005年   3篇
  2004年   9篇
  2003年   11篇
  2002年   6篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有257条查询结果,搜索用时 781 毫秒
201.
Prediction of the track and intensity of tropical cyclones is one of the most challenging problems in numerical weather prediction (NWP). The chief objective of this study is to investigate the performance of different cumulus convection and planetary boundary layer (PBL) parameterization schemes in the simulation of tropical cyclones over the Bay of Bengal. For this purpose, two severe cyclonic storms are simulated with two PBL and four convection schemes using non-hydrostatic version of MM5 modeling system. Several important model simulated fields including sea level pressure, horizontal wind and precipitation are compared with the corresponding verification analysis/observation. The track of the cyclones in the simulation and analysis are compared with the best-fit track provided by India Meteorological Department (IMD). The Hong-Pan PBL scheme (as implemented in NCAR Medium Range Forecast (MRF) model) in combination with Grell (or Betts-Miller) cumulus convection scheme is found to perform better than the other combinations of schemes used in this study. Though it is expected that radiative processes may not have pronounced effect in short-range forecasts, an attempt is made to calibrate the model with respect to the two radiation parameterization schemes used in the study. And the results indicate that radiation parameterization has noticeable impact on the simulation of tropical cyclones.  相似文献   
202.
The impact of different land-surface parameterisation schemes for the simulation of monsoon circulation during a normal monsoon year over India has been analysed. For this purpose, three land-surface parameterisation schemes, the NoaH, the Multi-layer soil model and the Pleim-Xiu were tested using the latest version of the regional model (MM5) of the Pennsylvania State University (PSU)/National Center for Atmospheric Research (NCAR) over the Indian summer monsoon region. With respect to different land-surface parameterisation schemes, latent and sensible heat fluxes and rainfall were estimated over the Indian region. The sensitivity of some monsoon features, such as Somali jet, tropical easterly jet and mean sea level pressure, is discussed. Although some features of the Indian summer monsoon, such as wind and mean sea level pressure, were fairly well-simulated by all three schemes, many differences were seen in the simulation of the typical characteristics of the Indian summer monsoon. It was noticed from the results that the features of the Indian summer monsoon, such as strength of the low-level westerly jet, the cross-equatorial flow and the tropical easterly jet were better simulated by NoaH compared with verification analysis than other land-surface schemes. It was also observed that the distribution of precipitation over India during the peak period of monsoon (July) was better represented with the use of the NoaH scheme than by other schemes.
U. C. MohantyEmail:
  相似文献   
203.
Mohanty  Sachiko  Rao  A. D.  Pradhan  Himansu 《Natural Hazards》2017,87(2):1109-1124

The influence of seasonal and cyclonic winds is studied on the characteristics of internal waves (IWs) over the western Bay of Bengal (BoB) by using MITgcm model. As the BoB experiences reversal of seasonal winds and also tropical cyclones during pre-monsoon and post-monsoon months, its effect is seen through the computation of spectral estimates of the IWs. It is seen that the peak estimate is associated with the semidiurnal frequency at all the depths and is found higher in May compared to November. This is attributed to the presence of shallow mixed layer depth and deep thermocline due to the upwelling favorable winds. The computation of isopycnal displacement infers that the internal tides are present from 40 to 120 m depth in case of upwelling favorable winds of May, whereas, the presence of internal tides is restricted between 90 and 120 m for the downwelling favorable winds of November. During May, the available potential energy is also seen in a narrow coastal stretch, whilst it is absent in November. During the Hudhud cyclone period of October 7–14, 2014, it is noticed from the spectral estimates that the IWs of tidal frequency are replaced by inertial frequency with a periodicity of about 2 days as a consequence of strong cyclonic winds. The progressive vector diagram shows the mean current is initially westward up to October 17, 2014 and then northeastward with well-defined clockwise circulation. The maximum radius of inertial oscillation of 15 km is observed. After the cyclone ceases, the estimate associated with inertial frequency slowly diminishes and enhances the estimates related to internal tides. The simulations also suggest that the internal tides are absent for about 6 weeks as a response of the cyclonic winds.

  相似文献   
204.
ABSTRACT

Chilika, a lagoon along the east coast of India, is undergoing transformation due to frequent shoreline change near inlet(s). Shoreline change near inlet includes change in position and shape of inlet, inlet channel length, and spit growth/erosion. These variable features of lagoon inlet(s) critically depend on alongshore sediment transport (LST) and discharge (water and sediment) from the lagoon to the sea. The LST and the processes responsible for sand spit growth/erosion, considered as important attributes of inlet stability, are the subject matter of the present investigation and hence the study assumes importance. The study includes integration of observational and modeling framework. Observations include nearshore wave, bathymetry, beach profile, shoreline and sediment grain size of spits while numerical modeling includes simulation of the wave using MIKE 21 Spectral Wave model and LST simulation using LITtoral DRIFT. The results indicate that the predominant wave directions as S and SSE, which induces round the year south to north alongshore transport with significant seasonal variation in magnitude. The estimated LST closely matches with previous studies near Chilika inlet and for other locations along the Odisha coast. Besides temporal variability, the study reveals spatial variability in alongshore transport near Chilika inlet and considers it as one of the important attributes along with northward spit growth for inlet migration/closure/opening.  相似文献   
205.
—The present study emphasizes the importance of proper representation of boundary layer physics in a general circulation model. The Turbulent Kinetic Energy (TKE) closure scheme incorpo rates important processes of the Planetary Boundary Layer (PBL) compared to a simplistic first-order closure model. Hence the model which has the TKE closure scheme is capable of simulating important weather systems associated with summer monsoon, such as monsoon depressions and lows that form over the Indian subcontinent quite well compared to the first-order closure model. The present study indicates better performance of the global model with the TKE scheme in the prediction of the monsoon circulation, including the tracks of the depressions over the Indian subcontinent. Medium-range weather prediction has also improved with the use of the TKE closure. However further studies are necessary to improve the forecast, with emphasis on boundary layer processes.  相似文献   
206.
The feasibility of a potential bioindicator based on functional groups of microzooplankton tintinnids for bioassessments of water quality status was studied during southwest monsoon (June to September) along the coastal waters of Kalpakkam, India during 2012–2015. The work highlights the following features (1) tintinnid community composed of 28 species belonging to 11 genera and 9 families, revealed significant differences among the four study sites (2) maximum numerical abundance (2224 ± 90 ind. l? 1) and species diversity (H′ = 2.66) of tintinnid were recorded towards Bay of Bengal whereas minimum abundance (720 ± 35 ind. l? 1) and diversity (H′ = 1.74) were encountered in the backwater sites, (3) multivariate analyses [RELATE, Biota-environment (BIOENV) and canonical analysis of principal coordinates (CAP)] reveal that chl a, nitrate and phosphate were the potential causative factors for tintinnid distribution. Based on the results, we suggest that tintinnids may be used as a potential bioindicator of water quality status in marine ecosystem.  相似文献   
207.
Generation and propagation of internal waves (IWs) in the coastal waters of the extended shelf of the western Bay of Bengal are investigated for late winter by using the Massachusetts Institute of Technology General Circulation Model (MITgcm). The model is forced with astronomical tides and daily winds. Monthly climatological temperature and salinity fields are used as initial conditions. The simulations are compared with time series observations of temperature and currents from acoustic Doppler current profiler (ADCP) and conductivity-temperature-depth (CTD) moored at three locations south of Gopalpur: two at a local depth of 100 m and another at 400-m depth during 19–21 February 2012. The comparison of the spectral estimates for the time series of temperature from the model and observations are in reasonable agreement for the near-tidal frequency waves. The peak of temperature spectra is always found near the shelf break region which steadily lost its intensity over the continental shelf. The calculation of Richardson number reflected the presence of local mixing due to density overturning in the shelf region. To understand further the generation and propagation of internal tides in the region, energy flux and conversion of barotropic-to-baroclinic M2 tidal energy are examined. The model simulations suggest that the internal tide is generated all along the shelf slope. The energy flux analysis shows that the internal tides propagate to either side of the generation sites.  相似文献   
208.
The morphological changes of spits and inlets of the Chilika lagoon, the largest brackish water tropical coastal lagoon in Asia, are investigated using real-time kinematic GPS observation and numerical models during 2009–2013. The seasonal/interannual variations of the spit and inlet cross-sectional areas with varying widths and depths are recorded in association with different physical processes. The results show significant changes in spit morphology: particularly, the south spit accreted continuously, while the middle and north spits eroded. The cross-sectional depth of inlets becomes narrower and deeper during summer and winter seasons, while they are wider and shallower during the monsoon. The model results show that sediment transport rate is larger during monsoon and summer, while it is relatively less during the winter. Alongshore, sediment transport is predominantly northward throughout the study period. The result shows that gain/loss of the spits and closure/opening of inlets are significantly controlled by the high wave power, longshore drifts, and river discharge. The study demonstrates that the combined use of observational and numerical models is very effective to understand the changes of spit and inlet morphology and their impact on ecological conditions of the lagoon environment.  相似文献   
209.
210.
We propose here that the 8 October 2005 North Pakistan earthquake occurred beneath the wedge-top of Balakot Formation in the Hazara-Kashmir syntaxial area. Slip occurred along the Muzaffarabad thrust, a southeast extended part of the Indus-Kohistan seismic zone. Tectonic loading of the high-density wedge/thrust sheet between the wedge-top and the descending Indian lithosphere coupled with continued flexural tectonics provoked this earthquake. The obliquely converging Indian plate along with block rotations led to development of a pinned zone around Northwestern Syntaxis of the Himalayas. Strain adjustment related to the rotational deformation processes resulted in the buckling of the more competent rock-units sandwiched between the less competent rock-units around the Hazara-Kashmir syntaxis. The western limb of the buckled unit gave rise to the development of thrusts and associated oblique slip in the inner arc of the competent rock-unit. The observations demonstrate reactivated tectonic movement along the growing fracture-tip of the buried Riasi thrust.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号