首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   522篇
  免费   25篇
  国内免费   14篇
测绘学   12篇
大气科学   69篇
地球物理   134篇
地质学   200篇
海洋学   31篇
天文学   68篇
综合类   3篇
自然地理   44篇
  2023年   4篇
  2022年   2篇
  2021年   18篇
  2020年   19篇
  2019年   18篇
  2018年   21篇
  2017年   18篇
  2016年   27篇
  2015年   24篇
  2014年   27篇
  2013年   31篇
  2012年   29篇
  2011年   42篇
  2010年   27篇
  2009年   25篇
  2008年   27篇
  2007年   26篇
  2006年   14篇
  2005年   8篇
  2004年   13篇
  2003年   11篇
  2002年   5篇
  2001年   8篇
  2000年   2篇
  1999年   7篇
  1998年   6篇
  1997年   5篇
  1996年   8篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1987年   5篇
  1986年   1篇
  1985年   5篇
  1984年   5篇
  1983年   7篇
  1982年   10篇
  1981年   6篇
  1979年   5篇
  1978年   6篇
  1977年   6篇
  1976年   6篇
  1975年   2篇
  1973年   3篇
  1972年   3篇
  1970年   1篇
  1960年   1篇
排序方式: 共有561条查询结果,搜索用时 15 毫秒
181.
182.
The Oligocene to Present Wrangell Volcanic Belt (WVB) extends for ~500 km across south‐central Alaska (USA) into Canada at a volcanic arc‐transform junction. Previously, geochemistry documented mantle wedge and slab‐edge melting in <12 Ma WVB volcanic rocks; new geochemistry shows that the same processes characterized ~18–30 Ma WVB magmatism in Alaska. New 40Ar/39Ar ages demonstrate that WVB magmatism in Alaska initiated at ~30 Ma due to flat‐slab subduction of the Yakutat microplate and that the dextral Totschunda fault was active at this time. Our results, together with prior studies, show that Alaskan WVB magmatism occurred chiefly due to subduction and should be considered a volcanic arc (e.g. the Wrangell Arc). The WVB provides a long‐term geological record of subduction, strike‐slip and magmatism. Slab‐edge upwelling, flat‐slab defocused fluid‐flux and faults acting as magma conduits are likely responsible for the exceptionally large volcanoes and high eruption rates of the Wrangell Arc.  相似文献   
183.
Ambiguous landscape histories can arise from equivocal or incomplete geomorphological, sedimentological or geochronological evidence. In this study, we apply quantitative analyses to robustly assess the origin and age of a field of rounded mounds, known as ‘The Hillocks’. Using clast analysis, the sediment is shown to be consistent with a landslide origin but inconsistent with other glacial sediments in the region. Cosmogenic 10Be exposure age dating suggests The Hillocks formed ~8 ka. Ground‐penetrating radar reveals that the deposit rests upon deltaic foreset beds; combined with topographical data, we calculate a deposit volume of ~15–27 M m3, consistent with the estimated volume of the proposed source area. Overall, our data support a rock avalanche origin, indicating that by 8 ka the valley was ice‐free at The Hillocks’ location, and the level of Lake Wakatipu was lower than 340 m asl by this time. The Dart River delta shoreline was situated somewhere between The Hillocks and the present day shoreline at that time, and has prograded at a maximum average rate of 1 m a?1 since ~8 ka. These findings are significant given the lack of landforms by which to constrain glacial or post‐glacial landscape histories in this region of New Zealand. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   
184.
Rock‐Eval pyrolysis provides a quick, relatively inexpensive means of characterizing organic‐rich strata, and has been used for decades to understand global petroleum systems. Although designed to characterize ancient kerogens, pyrolysis is increasingly being used to understand Holocene systems as well. The ability of this technique to distinguish between types of preserved organic matter is useful in characterizing climatic evolution, particularly in systems sensitive to climatic fluctuation such as isolated fens and bogs. Cores collected from the Tokewanna and Garden Basin Cattail fens in central/eastern Utah exhibit variability of organic source, with the mixture of terrestrial and algal sources varying through time, as shown through the hydrogen index (HI) and oxygen index pyrolysis parameters. A sediment core was collected at each fen, and 176 samples were taken from the cores at 6‐cm intervals. Total organic carbon (TOC) for all samples ranges from 1.3 to 44.2%, with an average of 18.2% TOC. Samples range from 84 to 687 HI, equivalent to Type I (lacustrine algal) to Type III (terrestrial) organic material (OM). Variability in HI response represents mixing of the two OM sources, and the relative amount of aqueous organic input can be estimated through time based on age‐calibrated HI curves at the two sites. The balance of organic input serves as an accurate, high‐resolution proxy for climate, and calibration with palynological data near both sites confirms patterns shown by pyrolysis, showing the utility of this method in quickly, affordably and accurately characterizing Holocene sediments for use in understanding palaeoclimate.  相似文献   
185.
X-ray tomography is used to analyse the grain size and sedimentary fabric of two tsunami deposits in the Marquesas Islands (French Polynesia, Pacific Ocean) which are particularly exposed to trans-Pacific tsunamis. One site is located on the southern coast of Nuku Hiva Island (Hooumi) and the other one is on the southern coast of Hiva Oa Island (Tahauku). Results are compared with other techniques such as two-dimensional image analysis on bulk samples (particle analyser) and anisotropy of magnetic susceptibility. The sedimentary fabric is characterized through three-dimensional stacks of horizontal slices (following a vertical step of 2·5 mm along the cores), while grain-size distribution is estimated from two-dimensional vertical slices (following a step of 2 mm). Four types of fabric are distinguished: (a) moderate to high angle (15 to 75°); (b) bimodal low-angle (<15°); (c) low to high angle with at least two different orientations; and (d) dispersed fabric. The fabric geometry in a tsunami deposit is not only controlled by the characteristics of the flow itself (current strength, flow regime, etc.) but also sediment concentration, deposition rate and grain-size distribution. There is a notable correlation between unimodal high-angle fabric – type (a) – and finely-skewed grain-size distribution. The two tsunami deposits studied represent two different scenarios of inundation. As demonstrated here, X-ray tomography is an essential method for characterizing past tsunamis from their deposits. The method can be applied to many other types of sediments and sedimentary rocks.  相似文献   
186.
Landslides in Kerala, India, have been shown to be preceded not only by critical rainfall over a short period but also a much longer period of elevated pore pressure. Such rainfall-triggered landslides are difficult to monitor due to a lack of adequate data on the locations of failures and precipitation. Here, a method is presented using Transient Rainfall Infiltration and Grid-based Regional Slope stability (TRIGRS) as a tool to model the relationship between critical rainfall and antecedent pore pressure as they relate to slope stability, which can be useful for hazard assessment in sparse data regions. This is demonstrated by parameterizing the model with a combination of regional data sources, remote sensing, and temporal back-analysis based on two known failure events (June 2004 and July 2007). Ranges of possible geotechnical and hydraulic parameters were obtained from various local and regional sources, and soil thickness was modeled as a function of slope angle. Rainfall was estimated using satellite microwave radiometry data. For back-analysis, combinations of cohesion, friction angle, and water table depth were then tested in TRIGRS using trial and error until the predicted and observed failure times coincided for the two failure events. While the spatial prediction accuracy of the model is low and multiple solution sets are expected to exist, the results confirm that information regarding the critical pre-failure conditions and stability changes over time can be derived despite data-poor circumstances. Future studies can be undertaken extending this method to characterize many parameter combinations and incorporate more failure cases to develop probabilistic early-warning thresholds.  相似文献   
187.
The study assessed changes in the rainfall regime in Nigeria between 1961 and 2004 in terms of (a) absolute seasonality—the length of dry and wet season; (b) relative seasonality—rainfall contrast during the year; (c) number of rainfall maxima and minima; and (d) timing of rainfall maxima and minima. Trends in the mean monthly surface locations of the Inter-tropical Discontinuity (ITD) were also examined as a prominent factor of the rainfall regime. Changes in the regime were examined over four time slices: 1961–1971, 1972–1982, 1983–1993 and 1994–2004. The results show that, in the area of single rainfall maximum regime, the length of the wet season has increased from 4 months (in 1961–1971) to 5 months (since 1972–1982). The rainfall relative seasonality has consistently been ‘most rain in 3 months or less’. The rainfall maxima still indicate single rainfall maximum but shift in the peak from August to July. Rainfall during the months of June to September appears to have witnessed declining trends over the first three time slices. The last time slice however indicates trends towards a wetter condition. For the area of double maxima rainfall regime, the length of the wet season has consistently been 8 months. The rainfall relative seasonality has consistently been ‘rather seasonal with a short drier season’. The rainfall maxima and minima still indicate double rainfall maxima with August as the month of the minimum but shift in the primary peak from July to September. The northward latitudinal distance of the surface location of the ITD from the equator indicates significant upward trends during the months of May to September only and for a period of 1983–2000. The trend results of the ITD appears to account for most of the observed changes in the rainfall regime in Nigeria.  相似文献   
188.
From the Hagedoorn imaging technique to Kirchhoff migration and inversion   总被引:1,自引:0,他引:1  
The seminal 1954 paper by J.G. Hagedoorn introduced a heuristic for seismic reflector imaging. That heuristic was a construction technique – a 'string construction' or 'ruler and compass' method – for finding reflectors as an envelope of equal traveltime curves defined by events on a seismic trace. Later, Kirchhoff migration was developed. This method is based on an integral representation of the solution of the wave equation. For decades Kirchhoff migration has been one of the most popular methods for imaging seismic data. Parallel with the development of Kirchhoff wave-equation migration has been that of Kirchhoff inversion, which has as its objectives both structural imaging and the recovery of angle-dependent reflection coefficients. The relationship between Kirchhoff migration/inversion and Hagedoorn's constructive technique has only recently been explored. This paper addresses this relationship, presenting the mathematical structure that the Kirchhoff approach adds to Hagedoorn's constructive method and showing the relationship between the two.  相似文献   
189.
Anthropogenic modifications to the landscape, with agricultural activities being a primary driver, have resulted in significant alterations to the hydrologic cycle. Artificial drainage, including surface and subsurface drainage (tile drains), is one of the most extensive manipulations in agricultural landscapes and thus is expected to provide a distinct signature of anthropogenic modification. This study adopts a data synthesis approach in an effort to characterize the signature of artificial subsurface drainage. Daily discharge data from 24 basins across the state of Iowa, which encapsulate a range of anthropogenic modifications, are assessed using a variety of flow metrics. Results indicate that the presence of artificial subsurface drainage leads to a homogenization of landscape hydrologic response. Non‐tiled watersheds exhibit a decrease in the area‐normalized peak discharge and an increase in the baseflow ratio (baseflow/streamflow) with increases in the spatial scale, while scale invariance is apparent in tiled basins. Within‐basin variability in hydrograph recession coefficients also appears to decrease with increases in the proportion of the catchment that is artificially drained. Finally, the differences between tiled and non‐tiled landscapes disappear at scales greater than approximately 2200 km2, indicating that this may be a threshold scale for studying the effects of tile drainage. This decrease in within‐basin variability and the scale invariance of hydrologic metrics in artificially drained watersheds are attributed to the creation of a bypass flow hydrologic pathway that bypasses the complexity of the catchment travel paths. Spatial homogeneity in responses implies that it may be possible to develop more parsimonious hydrologic models for these regions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
190.
Two rock avalanches in Troms County – the Grøtlandsura and Russenes – were selected as CRONUS-EU natural cosmogenic 10Be production-rate calibration sites because they (a) preserve large boulders that have been continuously exposed to cosmic irradiation since their emplacement; (b) contain boulders with abundant quartz phenocrysts and veins with low concentrations of naturally-occurring 9Be (typically < 1.5 ppb); and (c) have reliable minimum radiocarbon ages of 11,424 ± 108 cal yr BP and 10,942 ± 77 cal yr BP (1σ), respectively. Quartz samples (n = 6) from these two sites contained between 4.28 × 104 and 5.06 × 104 at 10Be/g using the 1.387 Myr 10Be half-life. Determination of these concentrations accounts for topographic and self-shielding, and effects on nuclide production due to isostatic rebound are shown to be negligible. Persistent, constant snow and moss cover cannot be proven, but if taken into consideration they may have reduced 10Be concentrations by 10%. Using the 10Be half-life of 1.387 Myr and the Stone scaling scheme, and accounting for snow- and moss-cover, we calculate an error-weighted mean total 10Be production rate of 4.12 ± 0.19 at/g/yr (1σ). A corresponding error-weighted mean spallogenic 10Be production rate is 3.96 ± 0.16 at/g/yr (1σ), respectively. These are in agreement within uncertainty with other 10Be production rates in the literature, but are significantly, statistically lower than the global average 10Be production rate. This research indicates, like other recent studies, that the production of cosmogenic 10Be in quartz is lower than previously established by other production-rate calibration projects. Similarly, our findings indicate that regional cosmogenic production rates should be used for determining exposure ages of landforms in order to increase the accuracy of those ages. As such, using the total 10Be production rate from our study, we determine an error-weighted mean surface-exposure age of a third rock avalanche in Troms County (the Hølen avalanche) to be 7.5 ± 0.3 kyr (1σ). This age suggests that the rock avalanche occurred shortly after the 8.2 kyr cooling event, just as the radiocarbon ages of the Grøtlandsura and Russenes avalanches confirm field evidence that those rock-slope failures occurred shortly after deglaciation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号