首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   513篇
  免费   33篇
  国内免费   14篇
测绘学   12篇
大气科学   69篇
地球物理   134篇
地质学   200篇
海洋学   30篇
天文学   68篇
综合类   3篇
自然地理   44篇
  2023年   4篇
  2022年   2篇
  2021年   18篇
  2020年   18篇
  2019年   18篇
  2018年   21篇
  2017年   18篇
  2016年   27篇
  2015年   24篇
  2014年   27篇
  2013年   31篇
  2012年   29篇
  2011年   42篇
  2010年   27篇
  2009年   25篇
  2008年   27篇
  2007年   26篇
  2006年   14篇
  2005年   8篇
  2004年   13篇
  2003年   11篇
  2002年   5篇
  2001年   8篇
  2000年   2篇
  1999年   7篇
  1998年   6篇
  1997年   5篇
  1996年   8篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1987年   5篇
  1986年   1篇
  1985年   5篇
  1984年   5篇
  1983年   7篇
  1982年   10篇
  1981年   6篇
  1979年   5篇
  1978年   6篇
  1977年   6篇
  1976年   6篇
  1975年   2篇
  1973年   3篇
  1972年   3篇
  1970年   1篇
  1960年   1篇
排序方式: 共有560条查询结果,搜索用时 250 毫秒
351.
A combined BCDE (Brans-Dicke and Einstein-Cartan) theory with lambda-term is developed through Raychaudhuri’s equation, for inflationary scenario. It involves a variable cosmological constant, which decreases with time, jointly with energy density, cosmic pressure, shear, vorticity, and Hubble’s parameter, while the scale factor, total spin and scalar field increase exponentially. The post-inflationary fluid resembles a perfect one, though total spin grows, but the angular speed does not (Astrophys. Space Sci. 312: 275, 2007d).   相似文献   
352.
We show that when we work with coordinate cosmic time, which is not proper time, Robertson-Walker’s metric, includes a possible rotational state of the Universe. An exact formula for the angular speed and the temporal metric coefficient, is found.  相似文献   
353.
We study accelerating Universes with power-law scale-factors. We include shear and vorticity, a cosmological “constant” term, and spin from torsion, as in Einstein-Cartan’s theory when a scalar-field of Brans-Dicke type acts in the model. We find a “no-hair” result, for shear and vorticity; we also make contact with the alternative Machian picture of the Universe.  相似文献   
354.
The Machian Universe, is usually described with Newtonian Physics, We give an alternative General Relativistic picture for Mach’s Universe. As such, we show that, in the correct Machian limit, Schwarzschild’s metric is coherent with Robertson-Walker’s, on condition that there be a cosmological constant, or the Universe’s rotation—or both. It is now confirmed that the Universe is accelerating, so the former condition applies. The latter was also confirmed one more time with the recently discovered NASA space probes anomalies. From Kerr-Lense-Thirring solution, we find an inverse scale-factor dependent angular speed; we then, show that the cosmological “constant” may have Classically originated from a centrifugal acceleration field.  相似文献   
355.
We investigate the problem of balancing model complexity and input data requirements in snow hydrology. For this purpose, we analyze the performance of two models of different complexity in estimating variables of interest in snow hydrology applications. These are snow depth, bulk snow density, snow water equivalent and snowmelt run‐off. We quantify the differences between data and model prediction using 18 years of measurements from an experimental site in the French Alps (Col de Porte, 1325 m AMSL). The models involved in this comparison are a one‐layer temperature‐index model (HyS) and a multilayer model (Crocus). Results show that the expected loss in performance in the one‐layer temperature‐index model with respect to the multilayer model is low when considering snow depth, snow water equivalent and bulk snow density. As for run‐off, the comparison returns less clear indications for identification of a balance. In particular, differences between the models' prediction and data with an hourly resolution are higher when considering the Crocus model than the HyS model. However, Crocus is better at reproducing sub‐daily cycles in this variable. In terms of daily run‐off, the multilayer physically based model seems to be a better choice, while results in terms of cumulative run‐off are comparable. The better reproduction of daily and sub‐daily variability of run‐off suggests that use of the multilayer model may be preferable for this purpose. Variation in performance is discussed as a function of both the calibration solution chosen and the time of year. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
356.
We present a new method of analyzing model results to help identify the sensitivity of the location of different paleodust records to estimate local to regional scale variability of dust and climate variables. We use model simulations of global dust distribution from the last glacial maximum, preindustrial, current, and predicted future. The dust model has been previously shown to match available observational data for the current and last glacial maximum climate. Here, the model is compared to available source provenance data and is shown to agree with these limited observations. Using correlations and slopes across different time periods, the modeled relationships between deposition at specific observational sites and regional deposition and dustiness are shown. In addition, we evaluate the modeled relative slope of these cores to determine the location of paleodust sites that are especially easy to interpret as regional indicators of dustiness. Model predictions suggest that deposition in Antarctic ice cores is usually better than dust concentration to capture regional deposition and dustiness variability over glacial–interglacial time periods, in agreement with ice core interpretations. For Greenland, the model predicts a possible shift from dominantly wet deposition under modern conditions to dominantly dry deposition during glacial climate conditions indicating that deposition may be better suited to capture dustiness variability under LGM conditions in Greenland. The model also identifies specific regions that are not well covered by observations for glacial/interglacial or anthropocene dust variability. In addition, we evaluate the modeled relative slope of the location of these cores to determine regions that would provide ideal localities for pursuing records that would provide easily interpretable paleo-proxy records of regional dustiness.  相似文献   
357.
The European Alps are very sensitive and vulnerable to climate change. Recent improvements in Alpine glacier length records and climate reconstructions from annually laminated sediments of Alpine Lake Silvaplana give the opportunity to investigate the relationship between these two data sets of Alpine climate. Two different time frames are considered: the last 500–1000 years as well as the last 7400 years. First, we found good agreement between the two different climate archives during the past millennium: mass accumulation rates and biogenic silica concentration are largely in phase with the glacier length changes of Mer de Glace and Unterer Grindelwaldgletscher, and with the records of glacier length of Grosser Aletschgletscher and Gornergletscher. Secondly, the records are compared with temporally highly resolved data of solar activity. The Sun has had a major impact on the Alpine climate variations in the long term, i.e. several centuries to millennia. Solar activity varies with the Hallstatt periodicity of about 2000 years. Hallstatt minima are identified around 500, 2500 and 5000 a. Around these times grand solar minima (such as the Maunder Minimum) occurred in clusters coinciding with colder Alpine climate expressed by glacier advances. During the Hallstatt maxima around 0, 2000 and 4500 a, the Alpine glaciers generally retreated, indicating a warmer climate. This is supported by archaeological findings at Schnidejoch, a transalpine pass in Switzerland that was only accessible when glaciers had retreated. On shorter timescales, however, the influence of the Sun cannot be as easily detected in Alpine climate change, indicating that in addition to solar forcing, volcanic influence and internal climate variations have played an important role. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
358.
This study confirmed the ability of the Dempster–Shafer theory (DST) and the Dezert–Smarandache (Free DSm model) theory to significantly improve the quality of maps of regenerating forest stands in southern Quebec, Canada compared to a classical Maximum Likelihood Algorithm (MLA). The proposed approach uses data fusion methods that allow the integration of remotely sensed imagery with conventional maps of ecophysiographic features. While the MLA provided an overall accuracy of 82.75%, the DST and Free DSm models had overall accuracies of 90.14% and 91.13% respectively. In addition, this study showed that the data fusion methods can model the influence of biophysical parameters (e.g., surface deposits and drainage) on the growth potential of regenerating forest stands. This study illustrates the importance of the mass function allocation for each ancillary data source. We found that a Bayesian belief configuration provided results equivalent to those obtained when representing data uncertainty. This demonstrates the difficulty in modelling uncertainty associated with each ancillary source.  相似文献   
359.
The Marie Byrd Land province includes 18 large (up to 1,800 km3) central volcanoes distributed across an active volcano-tectonic dome. The typical volcano structure consists of a basal 1,000–5,000 m of basanite surmounted by trachyte and subordinate intermediate rocks, plus phonolite, or pantellerite, or comendite. The volumes of felsic sections are large (~30–700 km3), but these rocks probably make up <10% of volcanic rock in the province. This paper describes pantellerite volcanoes in the Ames and Flood Ranges, which include a large and varied suite of these iron-rich, silica-poor rhyolites. Isotopic and trace element data, maintenance of isotopic equilibrium throughout the basalt-felsic range, and the results of modeling, all exclude significant crustal contamination and point to fractional crystallization as the process that controls magmatic evolution. The most unusual feature of these volcanoes is the apparent need to derive pantellerites from basanite, the long interval of fractionation at the base of the lithosphere and crust, involving kaersutite as the key phase in developing pantellerite, and a plumbing system that permitted coeval eruption of pantellerite and phonolite from the same edifice. Peralkalinity most likely developed in upper crustal reservoirs during the final 4–5% of magmatic history, by fractionating a high proportion of plagioclase under low pH2O. Mantle plume activity appears to drive doming and volcanism. This, a stationary plate, and continental lithospheric structure seem to provide an optimal environment for the evolution of a diverse, large volume suite of felsic rocks by fractional crystallization.  相似文献   
360.
We discuss some aspects of the Horava-Lifshitz cosmology with different matter components considered as dominants at different stages of the cosmic evolution (each stage is represented by an equation of state pressure/density = constant). We compare cosmological solutions from this theory with their counterparts of General Relativity (Friedmann cosmology). At early times, the Horava-Lifshitz cosmology contains a curvature-dependent dominant term which is stiff matter-reminiscent and this fact motivates to discuss, in some detail, this term beside the usual stiff matter component (pressure = density) if we are thinking in the role that this fluid could have played early in the framework of the holographic cosmology. Nevertheless, we show that an early stiff matter component is of little relevance in Horava-Lifshitz cosmology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号