首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   4篇
  国内免费   3篇
大气科学   13篇
地球物理   19篇
地质学   59篇
海洋学   6篇
天文学   22篇
自然地理   2篇
  2022年   3篇
  2020年   2篇
  2019年   1篇
  2018年   9篇
  2017年   7篇
  2016年   9篇
  2015年   3篇
  2014年   9篇
  2013年   11篇
  2012年   6篇
  2011年   7篇
  2010年   4篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   4篇
  2005年   5篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
  1971年   1篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
51.
The radioactivity is dependent on the isotope and their concentration in the mineral such as potassium (K), uranium (U) and thorium (Th). In this paper the presence of a 3 to 5 m thick uranium and thorium bearing sediment of Cenozoic age is reported above Goru Formation of Jaisalmer basin. Gamma ray log response of Well-1 which falls under the study area has marked with very high GR (gamma ray) readings ranging from 350-1488 API coupled with high uranium and thorium content from spectral gamma ray log ranging from 92-178 ppm and 60-80 ppm respectively at the depth of 50 m from ground surface (-110m above MSL). Further studies are required to delineate the lateral thickness variation for mining purpose which may be a radioactive source.  相似文献   
52.
Abstract Meatiq and Hafafit core complexes are large swells in the Eastern Desert of Egypt, comprising two major tectono‐stratigraphic units or tiers. The lower (infrastructure) unit is composed of variably cataclased gneissose granites and high‐grade gneisses and schists. It is structurally overlain by Pan–African ophiolitic mélange nappes (the higher unit). The two units are separated by a low‐angle sole thrust, along which mylonites are developed. Major and trace element data indicate formation of the gneissose granites in both volcanic arc and within‐plate settings. Nevertheless, all analyzed gneissose granites and other infrastructural rocks, exhibit low initial ratios (Sri) (<0.7027), positive εNd(t) (+4.9 to +10.3) and Neoproterozoic Nd model age (TDM) (592–831 Ma for the gneissose granite samples). Although these values are compatible with other parts of the Arabian– Nubian Shield considered to be juvenile, the εNd(t) values and several incompatible element ratios of the gneissose granites are too low to be derived from a mantle source without contribution from an older continental crust. Our geological, Sr–Nd isotopic and chemical data combined with the published zircon ages indicate the existence of a pre‐Neoproterozoic continent in the Eastern Desert that started to break up at ca 800 Ma. Rifting and subsequent events caused the formation of oceanic crust and emplacement within‐plate alkali basalts in the hinterland domains of the old continent. The emplacement of basaltic magma might have triggered melting of lower crust in the old continent and resulted in emplacement of the within‐plate granite masses between 700 Ma and 626 Ma. The granite masses and other rocks in the old continent have been subjected to deformation during the over‐thrusting of Pan–African nappes, probably because of the oblique convergence between East and West Gondwanaland. Rb–Sr isotopes of the gneissose granites in both Meatiq and Hafafit core complexes defines an isochron age of 619 ± 25 Ma with Sri of 0.7009 ± 0.0017 and mean squares of weighted deviates = 2.0. We interpret this age as the date of thrusting of the Pan–African nappes in the Eastern Desert. Continued oblique convergence between East and West Gondwanaland could have resulted in the formation northwest–southeast‐trending Meatiq and Hafafit anticlinoriums.  相似文献   
53.
A study of normal faults in the Nubian Sandstone Sequence, from the eastern Gulf of Suez rift, has been conducted to investigate the relationship between the microstructure and petrophysical properties of cataclasites developed along seismic-scale faults (slip-surface cataclasites) and smaller displacement faults (deformation bands) found in their damage zones. The results help to quantify the uncertainty associated with predicting the fluid flow behaviour of seismic-scale faults by analysing small faults recovered from core, a common procedure in the petroleum industry. The microstructure of the cataclasites was analysed as well as their single-phase permeability and threshold pressure. Faulting occurred at a maximum burial depth of ∼1.2 km. The permeability of deformation band and slip-surface cataclasites varies over ∼1.5 orders of magnitude for a given fault. Our results suggest that the lowest measured deformation band permeabilities provide a good estimate for the arithmetic-mean permeability of the major slip-surface cataclasites. This is because the cataclastic permeability reduction is mostly established early in the deformation history. Stress at the time of faulting rather than final strain appears to be the critical factor determining fault rock permeability. For viable predictions it is important that the slip-surface cataclasites and deformation bands originate from the same host. On the other hand, a higher uncertainty is associated with threshold pressure predictions, as the arithmetic-mean slip-surface cataclasite threshold pressure exceeds the highest measured deformation band threshold pressure by at least a factor of 4.  相似文献   
54.
Magnetized accretion flows around black holes which include standing or oscillating shock waves can produce very realistic spectrum till a few MeV. These shocks accelerate hot electrons which produce power-law spectrum. The post-shock region intercepts soft-photons from an external source, namely, a Keplerian disk and also from distributed sources such as the synchrotron photons emitted from thermal and non-thermal electrons originated in the pre-shock and post-shock flow. These photons are inverse Comptonized by the thermal and the non-thermal electrons present in the CENBOL region. Computations show that the emitted radiation is extended till a few MeV. We include the bulk motion Comptonization as well and discuss its importance vis-a-vis the power-law spectrum produced by non-thermal electrons.   相似文献   
55.
56.
The seismic bearing capacity of shallow foundations resting on a modified Hoek–Brown rock mass is investigated within the framework of the kinematic approach of limit analysis theory. The analysis focuses on evaluating the reduction in bearing capacity induced by seismic loading and by the proximity of a rock slope. A pseudo‐static approach is adopted to account for the earthquake effects for the seismic bearing capacity evaluations. At the rock material level, the closed‐form expressions previously obtained for the support functions of the rock failure criterion allow the implementation of different failure mechanisms families, and thus to derive rigorous upper bounds estimates of the load‐bearing capacity in both static and seismic conditions. The effects of geometrical, strength and loading parameters are assessed through a large number of parametric computations. Finally, design tables are presented for practical use in rock engineering. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
57.
The paper deals with the modeling of some aspects, such as the formulation of constitutive equations for sediment material or finite element approach for basin analysis, related to mechanical compaction in sedimentary basins. In addition to compaction due to gravity forces and pore‐pressure dissipation, particular emphasis is given to the study of deformation induced by tectonic sequences. The numerical model relies upon the implementation of a comprehensive constitutive model for the sediment material formulated within the framework of finite poroplasticity. The theoretical model accounts for both hydromechanical and elasticity–plasticity coupling due to the effects of irreversible large strains. From the numerical viewpoint, a finite element procedure specifically devised for dealing with sedimentary basins as open systems allows to simulate within a two‐dimensional setting the process of sediment accretion or erosion. Several basin simulations are presented. The main objective is to analyze the behavior of a sedimentary basin during the different phases of its life cycle: accretion phase, pore‐pressure dissipation phase and compressive/extensional tectonic motions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
58.
59.
We propose a workflow for decision making under uncertainty aiming at comparing different field development plan scenarios. The approach applies to mature fields where the residual uncertainty is estimated using a probabilistic inversion approach. Moreover, a robust optimization method is presented to optimize controllable parameters in the presence of uncertainty. The key element of this approach is the use of response surface model to reduce the very high number of simulator model evaluations that are classically needed to perform such workflows. The major issue is to be able to build an efficient and reliable response surface. This is achieved using a Gaussian process (kriging) statistical model and using a particular training set (experimental design) developed to take into account the variable correlation induced by the probabilistic inversion process. For the problem of optimization under uncertainty, an iterative training set is proposed, aiming at refining the response surface iteratively such as to effectively reduce approximation errors and converging faster to the true solution. The workflow is illustrated on a realistic test case of a mature field where the approach is used to compare two new development plan scenarios both in terms of expectation and of risk mitigation and to optimize well position parameters in the presence of uncertainty.  相似文献   
60.
Coastal and bank erosion along the St. Lawrence River Waterway in Quebec, Canada, represents a hazard to local communities living along the river banks, as well as to the local fauna habitat. The purpose of this study is to assess the potential impact of the waves generated by long containerships on riverbank erosion and recession at critical sites along the St. Lawrence River Waterway, which have already experienced significant damage. A field study was carried out to investigate the ship-generated hydrodynamics and the various driving mechanisms of the erosion process induced by ship waves. The field measurements provided an assessment of the influence of the length of large vessels by comparing the characteristics of the hydrodynamics fields induced by the passage of two containerships of different lengths. The potential for bank erosion and recession is assessed in terms of the wake erosive energy incident to the shoreline. The field data are compared against analytical results predicted by an empirical model, as well as against a ship-generated hydrodynamics model. Several numerical simulations for quantifying the ship’s drawdown and its effects are also presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号