首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   5篇
测绘学   2篇
大气科学   29篇
地球物理   29篇
地质学   43篇
海洋学   8篇
天文学   23篇
综合类   1篇
自然地理   4篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   6篇
  2017年   7篇
  2016年   12篇
  2015年   2篇
  2014年   13篇
  2013年   17篇
  2012年   9篇
  2011年   16篇
  2010年   8篇
  2009年   7篇
  2008年   6篇
  2007年   2篇
  2005年   3篇
  2004年   6篇
  2003年   3篇
  2002年   2篇
  2000年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1969年   1篇
排序方式: 共有139条查询结果,搜索用时 31 毫秒
11.
The ecosystem services provided by forests modulate runoff generation processes, nutrient cycling and water and energy exchange between soils, vegetation and atmosphere. Increasing atmospheric CO2 affects many linked aspects of forest and catchment function in ways we do not adequately understand. Global levels of atmospheric CO2 will be around 40% higher in 2050 than current levels, yet estimates of how water and solute fluxes in forested catchments will respond to increased CO2 are highly uncertain. The Free Air CO2 Enrichment (FACE) facility of the University of Birmingham's Institute of Forest Research (BIFoR) is the only FACE in mature deciduous forest. The site specializes in fundamental studies of the response of whole ecosystem patches of mature, deciduous, temperate woodland to elevated CO2 (eCO2). Here, we describe a dataset of hydrological parameters – seven weather parameters at each of three heights and four locations, shallow soil moisture and temperature, stream hydrology and CO2 enrichment – retrieved at high frequency from the BIFoR FACE catchment.  相似文献   
12.
We report the complex spatial and temporal dynamics of hyporheic exchange flows (HEFs) and nitrogen exchange in an upwelling reach of a 200 m groundwater-fed river. We show how research combining hydrological measurement, geophysics and isotopes, together with nutrient speciation techniques provides insight on nitrogen pathways and transformations that could not have been captured otherwise, including a zone of vertical preferential discharge of nitrate from deeper groundwater, and a zone of rapid denitrification linking the floodplain with the riverbed. Nitrate attenuation in the reach is dominated by denitrification but is spatially highly variable. This variability is driven by groundwater flow pathways and landscape setting, which influences hyporheic flow, residence time and nitrate removal. We observed the spatial connectivity of the river to the riparian zone is important because zones of horizontal preferential discharge supply organic matter from the floodplain and create anoxic riverbed conditions with overlapping zones of nitrification potential and denitrification activity that peaked 10–20 cm below the riverbed. Our data also show that temporal variability in water pathways in the reach is driven by changes in stage of the order of tens of centimetres and by strength of water flux, which may influence the depth of delivery of dissolved organic carbon. The temporal variability is sensitive to changes to river flows under UK climate projections that anticipate a 14%–15% increase in regional median winter rainfall and a 14%–19% reduction in summer rainfall. Superimposed on seasonal projections is more intensive storm activity that will likely lead to a more dynamic and inherently complex (hydrologically and biogeochemically) hyporheic zone. We recorded direct evidence of suppression of upwelling groundwater (flow reversal) during rainfall events. Such flow reversal may fuel riverbed sediments whereby delivery of organic carbon to depth, and higher denitrification rates in HEFs might act in concert to make nitrate removal in the riverbed more efficient.  相似文献   
13.
We study the steady-state structure of an accretion disc with a corona surrounding a central, rotating, magnetized star. We assume that the magneto-rotational instability is the dominant mechanism of angular momentum transport inside the disc and is responsible for producing magnetic tubes above the disc. In our model, a fraction of the dissipated energy inside the disc is transported to the corona via these magnetic tubes. This energy exchange from the disc to the corona which depends on the disc physical properties is modified because of the magnetic interaction between the stellar magnetic field and the accretion disc. According to our fully analytical solutions for such a system, the existence of a corona not only increases the surface density but reduces the temperature of the accretion disc. Also, the presence of a corona enhances the ratio of gas pressure to the total pressure. Our solutions show that when the strength of the magnetic field of the central neutron star is large or the star is rotating fast enough, profiles of the physical variables of the disc significantly modify due to the existence of a corona.  相似文献   
14.
Sami Moisio 《Urban geography》2018,39(9):1421-1424
This article suggests that the developments during the past few decades indicate a qualitative shift in the city/state relation, and conceptualizes this shift as the geopolitical growth of cities and city-regions. Originally a state-orchestrated process, today this is manifested in the attempts of major cities and city-regions, in particular, to demand a stronger national and international political role even as claims are made for urban separatism. This process is connected to a geopolitical reasoning of the heightened role of cities in inter-state competition during the age of post-Fordist capitalism. Furthermore, the geopolitical growth of cities and city-regions is partly constituted in academic theories and expert knowledges that combine certain type of urbanism, economic growth, and political success, and which in so doing destabilize state-centered geopolitical imaginations.  相似文献   
15.
Despite myriad studies having been carried out on the diffusion of geographical information systems (GIS) technology, only a limited number have been done within the context of developing countries. This paper addresses the research question, how did the diffusion of GIS technology occur in Uganda? Mixed methods were used for data collection, and analysis was performed using a theoretical framework called the diffusion of innovations (DOI). The results of the study showed that the adoption of GIS by institutions in Uganda occurred in a classic diffusion pattern consistent with diffusion theory. Adoption of GIS was promoted by its relative advantage over, and compatibility with, existing technologies. It was characterized by both heterophilous and homophilous communication channels, and influenced by change agents and champions. Its rate of adoption followed an S-shaped diffusion curve, and was hampered by bureaucracy, and patronage-based societal norms. This study makes a contribution to literature on GIS diffusion in developing countries.  相似文献   
16.
Radon transform is a powerful tool with many applications in different stages of seismic data processing, because of its capability to focus seismic events in the transform domain. Three-parameter Radon transform can optimally focus and separate different seismic events, if its basis functions accurately match the events. In anisotropic media, the conventional hyperbolic or shifted hyperbolic basis functions lose their accuracy and cannot preserve data fidelity, especially at large offsets. To address this issue, we propose an accurate traveltime approximation for transversely isotropic media with vertical symmetry axis, and derive two versions of Radon basis functions, time-variant and time-invariant. A time-variant basis function can be used in time domain Radon transform algorithms while a time-invariant version can be used in, generally more efficient, frequency domain algorithms. Comparing the time-variant and time-invariant Radon transform by the proposed basis functions, the time-invariant version can better focus different seismic events; it is also more accurate, especially in presence of vertical heterogeneity. However, the proposed time-invariant basis functions are suitable for a specific type of layered anisotropic media, known as factorized media. We test the proposed methods and illustrate successful applications of them for trace interpolation and coherent noise attenuation.  相似文献   
17.
Seismic data denoising, random noise attenuation (RNA) and spike-like noise suppression, is a main consideration for improving the quality of records. RNA could increase signal to noise ratio (S/N) to avoid misinterpretation of seismic data. In this research, a novel method is created by using the combination of frequency-offset deconvolution (FXD) and decision-based median (DBM) filter for RNA from seismic data. The method is applied in two main phases; FXD is focused to remove the Gaussian noise and DBM filter is focused to attenuate the impulsive noise and spikes. To implement and verify the method, three types of data are used: two synthetic models (a model with linear events and a model with hyperbolic events) and an observed seismic section. The ability of the proposed method (FXD-DBM) in comparison of applying each in seismic RNA application is proven. The noise level is reduced obviously, and hence, the S/N of all examined seismic records is increased considerably after denoising by the combination of FX deconvolution and DBM filter. About the real seismic section, suppressing random noise and spikes show up improving the seismic reflector continuity and hence enhancing the interpretability of data. Moreover, some masked events by random noise are clarified in different parts of data after denoising using the planned method.  相似文献   
18.
19.
Structural health monitoring of large multispan flexible bridges is particularly important because of their important role in civil infrastructure and transportation systems. In this study, the response of the Yokohama Bay Bridge (YBB), a three‐span cable‐stayed bridge, to the 2011 Great East Japan Earthquake is used to perform multi‐input multi‐output system identification studies. The extensive multicomponent measurements are also used to develop and validate data‐driven nonlinear mathematical models that can predict the response of YBB to various earthquake records and can accurately estimate its damping characteristics when the system is driven into the nonlinear response range. A combination of least‐square (parametric) and neural network (nonparametric) approaches is used to develop the mathematical models, along with time‐marching techniques for dynamic response calculations. It is shown that the nonlinear mathematical models perform better than the equivalent linear models, both for response prediction and damping estimation. The importance of having an accurate approach for quantifying the damping due to the variety of nonlinear features in the YBB response is shown. This study demonstrates the significance of constructing robust mathematical models that can capture the correct physics of the underlying system and that can be used for computational purposes to augment experimental studies. Given the lack of suitable data sets for full‐scale structures under extreme loads, the availability of the long‐duration measurements from the 2011 Great East Japan Earthquake and its many strong aftershocks provides an excellent opportunity to perform the analyses presented in this study. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
20.
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft completed three flybys of Mercury in 2008–2009. During the first and third of those flybys, MESSENGER passed behind the planet from the perspective of Earth, occulting the radio-frequency (RF) transmissions. The occultation start and end times, recovered with 0.1 s accuracy or better by fitting edge-diffraction patterns to the RF power history, are used to estimate Mercury's radius at the tangent point of the RF path. To relate the measured radius to the planet shape, we evaluate local topography using images to identify the high-elevation feature that defines the RF path or using altimeter data to quantify surface roughness. Radius measurements are accurate to 150 m, and uncertainty in the average radius of the surrounding terrain, after adjustments are made from the local high at the tangent point of the RF path, is 350 m. The results are consistent with Mercury's equatorial shape as inferred from observations by the Mercury Laser Altimeter and ground-based radar. The three independent estimates of radius from occultation events collectively yield a mean radius for Mercury of 2439.2±0.5 km.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号