首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24517篇
  免费   185篇
  国内免费   920篇
测绘学   1413篇
大气科学   1983篇
地球物理   4534篇
地质学   11638篇
海洋学   1012篇
天文学   1656篇
综合类   2164篇
自然地理   1222篇
  2023年   1篇
  2022年   2篇
  2021年   9篇
  2020年   9篇
  2019年   2篇
  2018年   4769篇
  2017年   4040篇
  2016年   2588篇
  2015年   238篇
  2014年   91篇
  2013年   40篇
  2012年   997篇
  2011年   2735篇
  2010年   2019篇
  2009年   2316篇
  2008年   1893篇
  2007年   2362篇
  2006年   52篇
  2005年   198篇
  2004年   408篇
  2003年   411篇
  2002年   251篇
  2001年   47篇
  2000年   54篇
  1999年   13篇
  1998年   23篇
  1996年   2篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   21篇
  1980年   19篇
  1976年   6篇
  1969年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Different techniques have been used to discuss the existence of significant relation between the El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD). Various studies present their interaction and influence on the natural disasters (i.e. drought, flood, etc.) over large parts of the globe. This study uses a Markov chain method to investigate the relation between the ENSO and IOD for the period of 62 years (1950–2011) and aggregates their influence on the occurrence of floods in Pakistan. Both data sets show similarities in the formation of transition matrices and expected number of visits from one state to another. The strong values of 2-dimensional correlation and high self-communication of the transition states confirm the existence of a possible relation between ENSO and IOD data. Moreover, significant values of dependency and stationary test endorse the applicability of the Markov chain analyses. The independent analysis shows that strong events of both data sets are co-occurred in the same flood years. During the study period maximum number of floods was observed during summer monsoon season. However, further analysis shows that after 1970, Pakistan observed the highest percentage of floods occurred per year during El Nino, Non-ENSO and positive IOD years. These observations and results demonstrate that climate variability especially ENSO and IOD should be incorporated into disaster risk analyses and policies in Pakistan.  相似文献   
992.
Flood disasters and its consequent damages are on the rise globally. Pakistan has been experiencing an increase in flood frequency and severity along with resultant damages in the past. In addition to the regular practices of loss and damage estimation, current focus is on risk assessment of hazard-prone communities. Risk measurement is complex as scholars engaged in disaster science and management use different quantitative models with diverse interpretations. This study tries to provide clarity in conceptualizing disaster risk and proposes a risk assessment methodology with constituent components such as hazard, vulnerability (exposure and sensitivity) and coping/adaptive capacity. Three communities from different urban centers in Pakistan have been selected based on high flood frequency and intensity. A primary survey was conducted in selected urban communities to capture data on a number of variables relating to flood hazard, vulnerability and capacity to compute flood risk index. Households were categorized into different risk levels, such as can manage risk, can survive and cope, and cannot cope. It was found that risk levels varied significantly across the households of the three communities. Metropolitan city was found to be highly vulnerable as compared to smaller cities due to weak capacity. Households living in medium town had devised coping mechanisms to manage risk. The proposed methodology is tested and found operational for risk assessment of flood-prone areas and communities irrespective of locations and countries.  相似文献   
993.
A review of advances in China’s flash flood early-warning system   总被引:1,自引:0,他引:1  
This paper summarizes the main flash flood early-warning systems of America, Europe, Japan, and Taiwan China and discusses their advantages and disadvantages. The latest development in flash flood prevention is also presented. China’s flash flood prevention system involves three stages. Herein, the warning methods and achievements in the first two stages are introduced in detail. Based on the worldwide experience of flash flood early-warning systems, the general research idea of the third stage is proposed from the viewpoint of requirements for flash flood prevention and construction progress of the next stage in China. Real-time dynamic warning systems can be applied to the early-warning platform at four levels (central level, provincial level, municipal level, and county level) . Through this, soil moisture, peak flow, and water level can be calculated in real-time using distributed hydrological models, and then flash flood warning indexes can be computed based on defined thresholds of runoff and water level. A compound warning index (CWI) can be applied to regions where rainfall and water level are measured by simple equipment. In this manner, flash-flood-related factors such as rainfall intensity and antecedent and cumulative rainfall depths can be determined using the CWI method. The proposed methodology for the third stage could support flash flood prevention measures in the 13th 5-Year Plan for Economic and Social Development of the People’s Republic of China (2016–2020). The research achievements will serve as a guidance for flash flood monitoring and warning as well as flood warning in medium and small rivers.  相似文献   
994.
Economic damage assessment for flood risk estimation is established in many countries, but attentions have been focused on macro- or meso-scale approaches and less on micro-scale approaches. Whilst the macro- or meso-scale approaches of flood damage assessment are suitable for regional- or national-oriented studies, micro-scale approaches are more suitable for cost–benefit analysis of engineered protection measures. Furthermore, there remains lack of systematic and automated approaches to estimate economic flood damage for multiple flood scenarios for the purpose of flood risk assessment. Studies on flood risk have also been driven by the assumption of stationary characteristic of flood hazard, hence the stationary-oriented vulnerability assessment. This study proposes a novel approach to assess vulnerability and flood risk and accounts for adaptability of the approach to nonstationary conditions of flood hazard. The approach is innovative in which an automated concurrent estimation of economic flood damage for a range of flood events on the basis of a micro-scale flood risk assessment is made possible. It accounts for the heterogeneous distribution of residential buildings of a community exposed to flood hazard. The feasibility of the methodology was tested using real historical flow records and spatial information of Teddington, London. Vulnerability curves and residual risk associated with a number of alternative extents of property-level protection adoptions are estimated by the application of the proposed methodology. It is found that the methodology has the capacity to provide valuable information on vulnerability and flood risk that can be integrated in a practical decision-making process for a reliable cost–benefit analysis of flood risk reduction options.  相似文献   
995.
Chinese central government made a commitment to achieve a 40–45% reduction in carbon dioxide (CO2) per unit of GDP by 2020 compared with 2005. This targeted reduction was allocated averagely among all the provinces rather than individually according to different situations of each province. Though some research has been done regarding this rough allocation, two shortcomings in previous studies exist: Firstly, CO2 marginal abatement cost (MAC) has been ignored as one of the CO2 emission reduction allocation indexes. Secondly, either subjective or objective method has been used rather than comprehensively of both subjective and objective method to calculate the weight of each index in the previous studies. In order to fill the gaps, this paper builds a two-stage Shapley information entropy model to allocate CO2 emission reduction quota among the Chinese provinces based on the equity and efficiency principles. Afterward, three CO2 emission reduction quota allocation scenarios have been proposed. The results show that the CO2 MAC is an indispensable index in CO2 emission reduction quota allocation, because its value of CO2 Shapley information entropy is the highest among five indexes. CO2 emission reduction quota of lower-MAC provinces should be allocated larger, while the quota of higher-MAC provinces should be allocated smaller. Therefore, two suggested policies have been proposed: First, differential CO2 emission reduction quota allocation should be proposed. Second, synergetic development should be promoted.  相似文献   
996.
In the present study, laboratory experiments were conducted to validate the applicability of a numerical model based on one-dimensional nonlinear long-wave equations. The model includes drag and inertia resistance of trees to tsunami flow and porosity between trees and a simplified forest in a wave channel. It was confirmed that the water surface elevation and flow velocity by the numerical simulations agree well with the experimental results for various forest conditions of width and tree density. Further, the numerical model was applied to prototype conditions of a coastal forest of Pandanus odoratissimus to investigate the effects of forest conditions (width and tree density) and incident tsunami conditions (period and height) on run-up height and potential tsunami force. The modeling results were represented in curve-fit equations with the aim of providing simplified formulae for designing coastal forest against tsunamis. The run-up height and potential tsunami forces calculated by the curve-fit formulae and the numerical model agreed within ± 10% error.  相似文献   
997.
The aim of this paper is to propose a location model of earthquake emergency service depot on the basis of hybrid multi-attribute decision-making method. The advantage of the proposed method is that practical mixed uncertainty of location decision information is considered, and the corresponding factors that affect the location of transfer stations are contained. To solve the location problem, a hybrid multi-attribute decision procedure without information transformation is developed. Besides, a novel weighting method and aggregation process is given. Finally, a numerical example is provided to show the feasibility and validity of the proposed method.  相似文献   
998.

Background

The credibility and effectiveness of country climate targets under the Paris Agreement requires that, in all greenhouse gas (GHG) sectors, the accounted mitigation outcomes reflect genuine deviations from the type and magnitude of activities generating emissions in the base year or baseline. This is challenging for the forestry sector, as the future net emissions can change irrespective of actual management activities, because of age-related stand dynamics resulting from past management and natural disturbances. The solution implemented under the Kyoto Protocol (2013–2020) was accounting mitigation as deviation from a projected (forward-looking) “forest reference level”, which considered the age-related dynamics but also allowed including the assumed future implementation of approved policies. This caused controversies, as unverifiable counterfactual scenarios with inflated future harvest could lead to credits where no change in management has actually occurred, or conversely, failing to reflect in the accounts a policy-driven increase in net emissions. Instead, here we describe an approach to set reference levels based on the projected continuation of documented historical forest management practice, i.e. reflecting age-related dynamics but not the future impact of policies. We illustrate a possible method to implement this approach at the level of the European Union (EU) using the Carbon Budget Model.

Results

Using EU country data, we show that forest sinks between 2013 and 2016 were greater than that assumed in the 2013–2020 EU reference level under the Kyoto Protocol, which would lead to credits of 110–120 Mt CO2/year (capped at 70–80 Mt CO2/year, equivalent to 1.3% of 1990 EU total emissions). By modelling the continuation of management practice documented historically (2000–2009), we show that these credits are mostly due to the inclusion in the reference levels of policy-assumed harvest increases that never materialized. With our proposed approach, harvest is expected to increase (12% in 2030 at EU-level, relative to 2000–2009), but more slowly than in current forest reference levels, and only because of age-related dynamics, i.e. increased growing stocks in maturing forests.

Conclusions

Our science-based approach, compatible with the EU post-2020 climate legislation, helps to ensure that only genuine deviations from the continuation of historically documented forest management practices are accounted toward climate targets, therefore enhancing the consistency and comparability across GHG sectors. It provides flexibility for countries to increase harvest in future reference levels when justified by age-related dynamics. It offers a policy-neutral solution to the polarized debate on forest accounting (especially on bioenergy) and supports the credibility of forest sector mitigation under the Paris Agreement.
  相似文献   
999.

Background

Urban trees have long been valued for providing ecosystem services (mitigation of the “heat island” effect, suppression of air pollution, etc.); more recently the potential of urban forests to store significant above ground biomass (AGB) has also be recognised. However, urban areas pose particular challenges when assessing AGB due to plasticity of tree form, high species diversity as well as heterogeneous and complex land cover. Remote sensing, in particular light detection and ranging (LiDAR), provide a unique opportunity to assess urban AGB by directly measuring tree structure. In this study, terrestrial LiDAR measurements were used to derive new allometry for the London Borough of Camden, that incorporates the wide range of tree structures typical of an urban setting. Using a wall-to-wall airborne LiDAR dataset, individual trees were then identified across the Borough with a new individual tree detection (ITD) method. The new allometry was subsequently applied to the identified trees, generating a Borough-wide estimate of AGB.

Results

Camden has an estimated median AGB density of 51.6 Mg ha–1 where maximum AGB density is found in pockets of woodland; terrestrial LiDAR-derived AGB estimates suggest these areas are comparable to temperate and tropical forest. Multiple linear regression of terrestrial LiDAR-derived maximum height and projected crown area explained 93% of variance in tree volume, highlighting the utility of these metrics to characterise diverse tree structure. Locally derived allometry provided accurate estimates of tree volume whereas a Borough-wide allometry tended to overestimate AGB in woodland areas. The new ITD method successfully identified individual trees; however, AGB was underestimated by ≤?25% when compared to terrestrial LiDAR, owing to the inability of ITD to resolve crown overlap. A Monte Carlo uncertainty analysis identified assigning wood density values as the largest source of uncertainty when estimating AGB.

Conclusion

Over the coming century global populations are predicted to become increasingly urbanised, leading to an unprecedented expansion of urban land cover. Urban areas will become more important as carbon sinks and effective tools to assess carbon densities in these areas are therefore required. Using multi-scale LiDAR presents an opportunity to achieve this, providing a spatially explicit map of urban forest structure and AGB.
  相似文献   
1000.
A CE-5T1 spacecraft completed a high-speed skip re-entry to the earth after a circumlunar flight on October 31, 2014. In addition to the strapdown inertial navigation system (SINS), a lightweight GPS receiver with rapid acquisition was developed as a navigation sensor in the re-entry capsule. The GPS receiver effectively solved the poor accuracy problem of long-term navigation using only the SINS. In contrast to ground users and low-earth-orbit spacecraft, numerous factors, including high altitude and kinetic characteristics in high-speed skip re-entry, are important for GPS positioning feasibility and were presented in accordance with the flight data. GPS solutions started at nearly 4900 km orbital altitude during the phases of re-entry process. These solutions were combined by an inertial measurement unit in a loosely coupled integrated navigation method and SINS navigation initialization. A simplified GPS/SINS navigation filter for limited resources was effectively developed and implemented on board for spacecraft application. Flight data estimation analyses, including trajectory, attitude, position distribution of GPS satellite, and navigation accuracy, were presented. The estimated accuracy of position was better than 42 m, and the accuracy of velocity was better than 0.1 m/s.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号