首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   10篇
  国内免费   2篇
测绘学   22篇
大气科学   18篇
地球物理   47篇
地质学   89篇
海洋学   24篇
天文学   12篇
综合类   1篇
自然地理   16篇
  2021年   2篇
  2020年   5篇
  2019年   2篇
  2018年   6篇
  2017年   9篇
  2016年   15篇
  2015年   4篇
  2014年   9篇
  2013年   11篇
  2012年   7篇
  2011年   6篇
  2010年   9篇
  2009年   15篇
  2008年   13篇
  2007年   5篇
  2006年   15篇
  2005年   5篇
  2004年   7篇
  2003年   8篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1996年   5篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   6篇
  1982年   1篇
  1981年   4篇
  1980年   4篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
排序方式: 共有229条查询结果,搜索用时 62 毫秒
51.
A study using multiple techniques provided insight into tectonic influences on ground water systems; the results can help to understand ground water systems in the tectonically active western United States and other parts of the world. Ground water in the San Bernardino Valley (Arizona, United States and Sonora, Mexico) is the main source of water for domestic use, cattle ranching (the primary industry), and the preservation of threatened and endangered species. To improve the understanding of ground water occurrence, movement, and sustainability, an investigation was conducted using a number of complementary methods, including major ion geochemistry, isotope hydrology, analysis of gases dissolved in ground water, aquifer testing, geophysics, and an examination of surface and subsurface geology. By combining information from multiple lines of investigation, a more complete picture of the basin hydrogeology was assembled than would have been possible using fewer methods. The results show that the hydrogeology of the San Bernardino Valley is markedly different than that of its four neighboring basins in the United States. The differences include water quality, chemical evolution, storage, and residence time. The differences result from the locally unique geology of the San Bernardino Valley, which is due to the presence of a magmatically active accommodation zone (a zone separating two regions of normal faults with opposite dips). The geological differences and the resultant hydrological differences between the San Bernardino Valley and its neighboring basins may serve as a model for the distinctive nature of chemical evolution of ground water in other basins with locally distinct tectonic histories.  相似文献   
52.
River restoration and bank stabilization programs often use vegetation for improving stream corridor habitat, aesthetic and function. Yet no study has examined the use of managed vegetation plantings to transform a straight, degraded stream corridor into an ecologically functional meandering channel. Experimental data collected using a distorted Froude‐scaled flume analysis show that channel expansion and widening, thalweg meandering and riffle and pool development are possible using discrete plantings of rigid, emergent vegetation, and the magnitudes of these adjustments depend on the shape of the vegetation zone and the density of the vegetation. These experimental results were verified and validated using a recently developed numerical model, and model output was then used to discuss mechanistically how rivers respond to the introduction of in‐stream woody vegetation. Finally, a hybrid method of meander design is proposed herein where managed vegetation plantings are used to trigger or force the desired morphologic response, transforming a straight, degraded reach into a more functional meandering corridor. It is envisioned that such numerical models could become the primary tool for designing future stream restoration programs involving vegetation and assessing the long‐term stability of such activities. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
53.
A large sediment deposit known as the Meiji Drift, located in the northwestern Pacific Ocean, is thought to have formed from deep water exiting the Bering Sea, although no notable deep water forms there presently. We determine the terrigenous sources since 140 ka to the drift using bulk sediment 40Ar–39Ar and Nd isotopic analyses on the silt-sized (20–63 μm) terrigenous fraction from Ocean Drilling Program (ODP) Site 884 to reconstruct paleo-circulation patterns. There are large changes in both isotopic tracers, varying on glacial–interglacial cycles. During glacial intervals, bulk sediment 40Ar–39Ar ages range between 40 and 80 Ma, while Nd isotopic values range from εNd = ? 1 to + 2. During interglacial intervals, sediments become much younger and more radiogenic, with bulk sediment ages falling to 2–15 Ma and Nd isotopic values ranging between εNd = + 5 and + 9. These data and quantitative comparison to potential source rocks indicate that the young Kamchatkan and Aleutian Arcs, lying NW and NE of the Meiji Drift, contribute the majority of sediment during interglacials. Conversely, older source rocks, such as those drained by the Yukon River and northeast Russia are the dominant origin of sediments during glacials. Mixing model calculations suggest that as much as 35–45% of the sediment deposited in the Meiji Drift during glacials is from the Bering Sea. It remains unclear whether thermohaline-type circulation or focussing of Bering Sea flow lead to the glacial–interglacial sediment source changes observed here.  相似文献   
54.
An attempt has been made to study the marine boundary layer characteristics over Bay of Bengal using BOBMEX (Bay of Bengal and Monsoon Experiment) pilot experiment data sets, which was conducted between 23rd October and 12th November 1998 on board ORV Sagar Kanya. A one-dimensional multilevel atmospheric boundary layer with TKE-ε closure scheme is employed to study the marine boundary layer characteristics. In this study two synoptic situations are chosen: one represents an active convection case and the other a suppressed convection. In the present article the marine boundary layer characteristics such as temporal evolution of turbulent kinetic energy, height of the boundary layer and the airsea exchange processes such as sensible and latent heat fluxes, drag coefficient for momentum are simulated during both active and suppressed convection. Marine boundary layer height is estimated from the vertical profiles of potential temperature using the stability criterion. The model simulations are compared with the available observations.  相似文献   
55.
MATHEMATICAL MODELS FOR LIQUID-SOLID TWO-PHASE FLOW   总被引:2,自引:0,他引:2  
I INTRODUCTIONTurbulence models for single-phase fluid flows have been developed and widely applied in mechanical,aeronautical, environmental and hydraulic engineering, and other fields. The closure techniques for theReynolds-averaged Navier-Stokes equations for various levels of models including the simple turbulencemodel, one-equation turbulence model, k-s turbulence model and turbulence stress/flux model have beenverified to be physically reasonable and have acceptable accuracy in app…  相似文献   
56.
U-Pb isotopic thermochronometry of rutile, apatite and titanite from kimberlite-borne lower crustal granulite xenoliths has been used to constrain the thermal evolution of Archean cratonic and Proterozoic off-craton continental lithosphere beneath southern Africa. The relatively low closure temperature of the U-Pb rutile thermochronometer (~400-450 °C) allows its use as a particularly sensitive recorder of the establishment of "cratonic" lithospheric geotherms, as well as subsequent thermal perturbations to the lithosphere. Contrasting lower crustal thermal histories are revealed between intracratonic and craton margin regions. Discordant Proterozoic (1.8 to 1.0 Ga) rutile ages in Archean (2.9 to 2.7 Ga) granulites from within the craton are indicative of isotopic resetting by marginal orogenic thermal perturbations influencing the deep crust of the cratonic nucleus. In Proterozoic (1.1 to 1.0 Ga) granulite xenoliths from the craton-bounding orogenic belts, rutiles define discordia arrays with Neoproterozoic (0.8 to 0.6 Ga) upper intercepts and lower intercepts equivalent to Mesozoic exhumation upon kimberlite entrainment. In combination with coexisting titanite and apatite dates, these results are interpreted as a record of postorogenic cooling at an integrated rate of approximately 1 °C/Ma, and subsequent variable Pb loss in the apatite and rutile systems during a Mesozoic thermal perturbation to the deep lithosphere. Closure of the rutile thermochronometer signals temperatures of 𙠂 °C in the lower crust during attainment of cratonic lithospheric conductive geotherms, and such closure in the examined portions of the "off-craton" Proterozoic domains of southern Africa indicates that their lithospheric thermal profiles were essentially cratonic from the Neoproterozoic through to the Late Jurassic. These results suggest similar lithospheric thickness and potential for diamond stability beneath both Proterozoic and Archean domains of southern Africa. Subsequent partial resetting of U-Pb rutile and apatite systematics in the cratonic margin lower crust records a transient Mesozoic thermal modification of the lithosphere, and modeling of the diffusive Pb loss from lower crustal rutile constrains the temperature and duration of Mesozoic heating to 𙡦 °C for ₞ ka. This result indicates that the thermal perturbation is not simply a kimberlite-related magmatic phenomenon, but is rather a more protracted manifestation of lithospheric heating, likely related to mantle upwelling and rifting of Gondwana during the Late Jurassic to Cretaceous. The manifestation of this thermal pulse in the lower crust is spatially and temporally correlated with anomalously elevated and/or kinked Cretaceous mantle paleogeotherms, and evidence for metasomatic modification in cratonic mantle peridotite suites. It is argued that most of the geographic differences in lithospheric thermal structure inferred from mantle xenolith thermobarometry are likewise due to the heterogeneous propagation of this broad upper mantle thermal anomaly. The differential manifestation of heating between cratonic margin and cratonic interior indicates the importance of advective heat transport along pre-existing lithosphere-scale discontinuities. Within this model, kimberlite magmatism was a similarly complex, space- and time-dependent response to Late Mesozoic lithospheric thermal perturbation.  相似文献   
57.
Precise U–Pb zircon dates from three volcanic ash beds that bracket the Hangenberg Shale in the Holy Cross Mountains, Poland, constrain the age and duration of one of the most significant palaeobiological events of the Palaeozoic Era, the Hangenberg Event. It is linked to a terminal Devonian global shift from greenhouse to icehouse climate conditions, a global transgression, and widespread black shale deposition. Our results constrain the Hangenberg Event to between 358.97 ± 0.11 Ma and 358.89 ± 0.20 Ma, with a calculated duration of 0.05 +0.14/?0.05 Ma. A third, underlying ash bed yielded a distinctly older age of 359.97 ± 0.46 Ma. The duration of ~50–100 ka. for the event is comparable to those of Quaternary glaciations, and is consistent with both a glacio‐eustatic origin for the eustatic fluctuations and changes in ocean chemistry that led to this major reorganization of the biosphere.  相似文献   
58.
An equation is developed to obtain the azimuths to the known observed points in space, thus reducing the solution to one of intersection.  相似文献   
59.
Saito  Susumu  Sunda  Surendra  Lee  Jiyun  Pullen  Sam  Supriadi  Slamet  Yoshihara  Takayuki  Terkildsen  Michael  Lecat  Frédéric 《GPS Solutions》2017,21(4):1937-1947
GPS Solutions - We investigated characteristics of anomalous spatial gradients in ionospheric delay on GNSS signals in the Asia-Pacific (APAC) low-magnetic latitude region in the context of the...  相似文献   
60.
Monazite is accepted widely as an important U-Pb geochronometer in metamorphic terranes because it potentially preserves prograde crystallization ages. However, recent studies have shown that the U-Pb isotopic system in monazite can be influenced by a variety of processes that partially obscure the early growth history. In this paper, we attempt to interpret complex monazite and xenotime U-Pb data from three Paleoproterozoic granite dikes exposed in the Grand Canyon. Single-crystal monazite analyses from an unfoliated granite dike spread out along concordia from the crystallization age of the dike (defined by U-Pb zircon data to be 1685 ± 1 Ma) to 1659 ± 2 Ma, a span of 26 million years. Back-scattered electron (BSE) imaging reveals that magmatic domains within most crystals from this sample are truncated by secondary domains associated with prominent embayments at the grain margin. Fragments of a single crystal yield contrasting, concordant dates and fragments from the edges and tips of crystals yield the youngest dates. Based on these observations we suggest that the secondary domains formed at least 26 million years after the crystal formed. Monazite and xenotime dates from the second sample, a sheared dike that cross-cuts the previous dike, spread out along concordia over 16 million years and range up to 2.4% normally discordant. Again, BSE imaging reveals secondary domains that truncate both magmatic zoning and xenocrystic cores. Fragments sliced from specific domains of a previously imaged monazite crystal demonstrate that the secondary domain is 13 million years younger than the core domain. Textures revealed in BSE images suggest that the secondary domains formed by fluid-mineral interaction. Normal discordance appears to result from both radiation damage accumulated at temperatures below 300 °C and water-mineral interaction. Monazite data from the third sample exhibit dispersion in both the 207Pb/206Pb dates (1677–1690 Ma) and discordance (+ 1.6% to − 3.1%). Reverse discordance in these monazites cannot be explained by incomplete dissolution or excess (thorogenic) 206Pb. Sliced fragments from several crystals reveal dramatic intragrain U-Pb disequilibrium that does not correlate with either Th or U concentration or position within the crystal. We suggest that reverse discordance resulted from mechanisms that involve exchange or fractionation of elemental U or elemental Pb, and that neither the U-Pb dates nor the 207Pb/206Pb dates are reliable indicators of the rock's crystallization age. Given the large number of processes proposed in the recent literature to explain monazite U-Pb systematics from rocks of all ages, our results can be viewed as another cautionary note for single-crystal and multi-crystal monazite geochronometry. However, we suggest that because individual crystals can preserve a temporal record of primary and secondary monazite growth, micro-sampling of individual monazite crystals may provide precise absolute ages on a variety of processes that operate during the prograde, peak and/or retrograde history of metamorphic terranes. Received: 9 June 1996 / Accepted: 18 October 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号