首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
地球物理   5篇
地质学   7篇
海洋学   2篇
天文学   2篇
  2020年   1篇
  2018年   2篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  1995年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
11.
Quality, availability and consistency of the measured and interpreted well log data are essential in the seismic reservoir characterization methods, and seismic petrophysics is the recommended workflow to achieve data consistency between logs and seismic domains. This paper uses seismic petrophysics workflow to improve well logs and pore geometry interpretations for an oil carbonate reservoir in the Fahliyan Formation in the southwest of Iran. The petrophysical interpreted well logs, rock physics and well-to-seismic tie analysis are integrated into the proposed workflow. Our implementation incorporates revising petrophysical well log interpretations and updating pore geometry characteristics to obtain a better well-tie quality. We first propose an improved pore-type characterization approach based on both P- and S-wave velocities for quantifying pore geometry. Then, seismic logs are estimated accordingly, and the results are used in the well-to-seismic analysis. The quality of the well-tie is improved, furthermore, by iterating on the petrophysical interpreted well logs as well as the calculated pore geometries. For the intervals with high-quality data, our workflow improves the consistency between the results of measured and modelled seismic logs. For the intervals with problematic well logs, the application of our proposed workflow results in the successful replacement of the poor data and subsequently leads to an improved wavelet estimation and well-tie results. In both cases, a higher quantification of pore geometries is achieved, which in turn is confirmed by the core images and formation micro-imager analysis.  相似文献   
12.
In this paper, the effect of different curvatures on the spatial variation of coherent flow structure inside two physical models with both strongly curved and mild multi-bend meanders is investigated. Three dimensional flow velocities at three sequential meanders were measured using an Acoustic Doppler Velocity meter (Micro-ADV). Three dimensions of flow velocity are classified into two major classes and eight different bursting events. The contribution probability and transition probability of each zone is calculated from experimental data. The results indicated that the effect of curvature in sequential bends was important particularly for strongly curved bends. The contribution probability of the events for strongly curved meanders with relative curvature (Rc/B) of 2.6 were found to be higher than for mild curved meanders with relative curvature (Rc/B) of 4.43. The minimum contribution probability was found in external inward interaction event. In addition, analysis of bursting events showed that the highest values of transition probabilities occurred in the stable organizations for both models. The influences of different curvatures on distributions of the Reynolds shear stress, the turbulent kinetic energy, the streamwise velocity and the vertical velocity were also shown to be in good agreement with eroded bed. The above results can be useful for finding meandering patterns inside rivers and also in river training works.  相似文献   
13.
Kuh-I-Mond field in the Zagros foreland basin is a conventional heavy oil resource and is composed of fractured carbonates whose fractures were filled by calcite, dolomite, and anhydrite cements. Oil inclusions occurred within the fracture-fill cements indicate that fractures were open and played an active role during oil migration and charge. The highest measured values for secondary porosities belong to fractures in Asmari Formation, which is characterized by significant amounts of vug- and fracture-filling cements. Fractures facilitated fluid circulation and subsequently dissolution of allochems and high Mg carbonates. In contrast, fine-grained carbonate facies were less cemented, and thus, porosity enhancement by cement dissolution was insignificant. Temperature profiles of oil inclusions in the dolomite, calcite, and anhydrite minerals characterized by distinct variations in the homogenization temperatures (Th) that are divided into two ranges below 50°C in anhydrites and from 45°C to 125°C in dolomites and calcites. The lower Th ranges for anhydrite suggests that it may have formed at shallower burial depths during early to middle diagenesis. The oil inclusions display trend for increasing temperature downward which conform to Formation geothermal gradient. In other word, the decreasing trend of Th temperatures upward within Asmari Formation that can be observed in Th versus depth plot is consistent with the uplift events at Late Miocene time and later that caused removal of about 1,300 m of the crest of the Kuh-I-Mond anticline. Vitrinite reflectance data from source rock intervals in the field area do not support vertical migration of locally generated hydrocarbons into the Kuh-I-Mond accumulation, and long-distance lateral oil migration and charge from a source kitchen to the southwest is proposed. Vitrinite reflectance data from this dolomite and limestone reservoir suggest low maturation levels corresponding to paleotemperatures less than 50°C. The observed maturation level (<0.5% Ro) does not exceed values for simple burial maturation based on the estimated burial history. Also, homogenization temperatures from fluid inclusion populations in calcite and dolomites show expected good correlation with reflectance-derived temperatures. The Th data represent pore fluids became warmer and more saline during burial. As aqueous fluid inclusions in calcite veins were homogenized between 22°C and 90°C with a decrease in salinity from 22 to 18 eq.?wt.% NaCl. The Th values suggest a change in water composition and that dolomite and calcite cements might have precipitated from petroleum-derived fluids. The hydrocarbon fluid inclusions microthermometry data suggest that the reservoir was being filled by heavy black oils in reservoir during Cenozoic. Aqueous fluid inclusions hosted by calcite equant sparry/fossil cavity fills suggest low cementation temperatures (<45°C) and high salinities (19 eq.?wt.% NaCl), while those in dolostones are characterized by highly variable homogenization temperature (52°C to 125°C) and salinities (6.5 to 20 eq.?wt.% NaCl).  相似文献   
14.
15.
16.
Soil erosion is considered as the most widespread form of soil degradation which causes serious environmental problems. This study investigates the performance of the maximum entropy (ME) in mapping rill erosion susceptibility in the Golgol watershed, Ilam province, Iran. To this end, ten rill erosion conditioning factors were selected to be employed in the modelling process based on an investigation of the literature. These layers are: elevation, slope percent, aspect, stream power index, topographic wetness index, distance from streams, plan curvature, lithology, land use, and soil. Then, a training dataset of rill erosion locations was used for modelling this phenomenon. The area under receiver operating characteristics curve was used for evaluating the performance of the ME model. In addition, Modified Pacific South-West Inter Agency Committee (MPSIAC) framework was applied and sediment yield was determined for different hydrological units in the study area. At last, Jackknife test was implemented to show the contribution of the factors in the modelling process. The results depicted that area under ROC curve for training and validation datasets were 0.867, and 0.794, respectively. Therefore, this conclusion can be achieved that ME worked well and could be a good tool for generating rill erosion susceptibility maps and its output could be employed for soil conservation in similar areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号