首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   4篇
大气科学   2篇
地球物理   20篇
地质学   36篇
海洋学   3篇
天文学   13篇
自然地理   2篇
  2022年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   6篇
  2015年   4篇
  2014年   11篇
  2013年   12篇
  2012年   5篇
  2011年   3篇
  2010年   5篇
  2009年   6篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  1997年   1篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1971年   1篇
  1968年   2篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
71.
The collision between the Arabian and Eurasian plates in eastern Turkey causes the Anatolian block to move westward. The North Anatolian Fault (NAF) is a major strike-slip fault that forms the northern boundary of the Anatolian block, and the Erzincan Basin is the largest sedimentary basin on the NAF. In the last century, two large earthquakes have ruptured the NAF within the Erzincan Basin and caused major damage (M s = 8.0 in 1939 and M s = 6.8 in 1992). The seismic hazard in Erzincan from future earthquakes on the NAF is significant because the unconsolidated sedimentary basin can amplify the ground motion during an earthquake. The amount of amplification depends on the thickness and geometry of the basin. Geophysical constraints can be used to image basin depth and predict the amount of seismic amplification. In this study, the basin geometry and fault zone structure were investigated using broadband magnetotelluric (MT) data collected on two profiles crossing the Erzincan Basin. A total of 24 broadband MT stations were acquired with 1–2 km spacing in 2005. Inversion of the MT data with 1D, 2D and 3D algorithms showed that the maximum thickness of the unconsolidated sediments is ~3 km in the Erzincan Basin. The MT resistivity models show that the northern flanks of the basin have a steeper dip than the southern flanks, and the basin deepens towards the east where it has a depth of 3.5 km. The MT models also show that the structure of the NAF may vary from east to west along the Erzincan Basin.  相似文献   
72.
73.
Noise and an abnormal distributed-image histogram is the main challenge of using SAR data. From this point of view, this study’s authors motivated the non-use of user-defined input parameters. To achieve this purpose, a fuzzy approach was proposed to extract shoreline from SENTINEL-1A data. The parameters in the processing of the SENTINEL-1A image were generated automatically with LIDAR-intensity-derived object-based segmentation results. The LIDAR-intensity image was segmented with the Mean-shift method. The corresponding result was used to estimate the input parameters for fuzzy clustering of the SENTINEL-1A image. Fuzzy segmentation was proposed, due to the expected large number of values regarding water and land classes except for the pixels along the shoreline. The memberships for land and water classes were separately computed. In the proposed approach, the results from LIDAR and SENTINEL-1A dataset are promising, with differences below 1 pixel (10?m) by evaluation with the used reference vector data.  相似文献   
74.
75.
We present the whole-rock and the mineral chemical data for upper mantle peridotites from the Harmanc?k region in NW Turkey and discuss their petrogenetic–tectonic origin. These peridotites are part of a Tethyan ophiolite belt occurring along the ?zmir-Ankara-Ercincan suture zone in northern Turkey, and include depleted lherzolites and refractory harzburgites. The Al2O3 contents in orthopyroxene and clinopyroxene from the depleted lherzolite are high, and the Cr-number in the coexisting spinel is low falling within the abyssal field. However, the orthopyroxene and clinopyroxene in the harzburgites have lower Al2O3 contents for a given Cr-number of spinel, and plot within the lower end of the abyssal field. The whole-rock geochemical and the mineral chemistry data imply that the Harmanc?k peridotites formed by different degrees of partial melting (~%10–27) of the mantle. The depleted lherzolite samples have higher MREE and HREE abundances than the harzburgitic peridotites, showing convex-downward patterns. These peridotites represent up to ~16 % melting residue that formed during the initial seafloor spreading stage of the Northern Neotethys. On the other hand, the more refractory harzburgites represent residues after ~4–11 % hydrous partial melting of the previously depleted MOR mantle, which was metasomatized by slab-derived fluids during the early stages of subduction. The Harmanc?k peridotites, hence, represent the fragments of upper mantle rocks that formed during different stages of the tectonic evolution of the Tethyan oceanic lithosphere in Northern Neotethys. We infer that the multi-stage melting history of the Harmanc?k peridotites reflect the geochemically heterogeneous character of the Tethyan oceanic lithosphere currently exposed along the ?zmir-Ankara-Erzincan suture zone.  相似文献   
76.
Yalova City (Turkey) is in a tectonically active location that is particularly affected by the northern branch of the North Anatolian Fault Zone. Magnitudes 7.4 and 7.2 earthquakes in 1999 caused great destruction in Yalova. The heavy damage to buildings and other civil engineering structures was mainly due to liquefaction-induced settlement and site effects such as resonance and amplification. In the first phase of this study, the soil liquefaction potential index (PL) and the induced soil settlement were estimated. In the second phase, the effects on sites in Yalova soil were investigated using microtremor and earthquake data. The fundamental periods and amplification in soft soil were compared with microtremor data and strong ground motion records obtained by a local array of eight accelerograph stations deployed in Yalova. Thirty-seven ‘single site’ ambient noise measurements were taken in a dense grid of points covering the centre of the city. A comparison between fundamental periods obtained from strong ground motion records and from microtremor measurements showed similarities, in the 0.1–5 Hz range. Finally, soil liquefaction and amplification (or resonance) were divided into regions according to the extent of damage and the geotechnical/geophysical results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号