全文获取类型
收费全文 | 3274篇 |
免费 | 1026篇 |
国内免费 | 15篇 |
专业分类
测绘学 | 64篇 |
大气科学 | 40篇 |
地球物理 | 1986篇 |
地质学 | 1265篇 |
海洋学 | 187篇 |
天文学 | 509篇 |
自然地理 | 264篇 |
出版年
2021年 | 32篇 |
2020年 | 58篇 |
2019年 | 196篇 |
2018年 | 196篇 |
2017年 | 290篇 |
2016年 | 329篇 |
2015年 | 346篇 |
2014年 | 367篇 |
2013年 | 419篇 |
2012年 | 292篇 |
2011年 | 273篇 |
2010年 | 257篇 |
2009年 | 163篇 |
2008年 | 216篇 |
2007年 | 153篇 |
2006年 | 113篇 |
2005年 | 112篇 |
2004年 | 95篇 |
2003年 | 107篇 |
2002年 | 93篇 |
2001年 | 82篇 |
2000年 | 87篇 |
1999年 | 15篇 |
1998年 | 2篇 |
1997年 | 3篇 |
1995年 | 2篇 |
1994年 | 5篇 |
1992年 | 1篇 |
1991年 | 3篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1986年 | 2篇 |
1984年 | 1篇 |
排序方式: 共有4315条查询结果,搜索用时 80 毫秒
131.
The existing on‐line numerical integration algorithms are derived from the Newmark method, which is based on an approximation of derivatives in the differential equation. The state–space procedure (SSP), based on an interpolation of the discrete excitation signals for piecewise convolution integral, has been confirmed as more reliable than the Newmark method in terms of numerical accuracy and stability. In an attempt to enhance the pseudodynamic test, this study presents an on‐line integration algorithm (referred to as the OS–SSP method) via an integration of the state–space procedure with Nakashima's operator‐splitting concept. Numerical stability and accuracy assessment of the proposed algorithm in addition to the explicit Newmark method and the OS method were investigated via an eigenvalue, frequency‐domain and time‐domain analysis. Of the on‐line integration algorithms investigated, the OS–SSP method is demonstrated as the most accurate method with an acceptable stability (although not unconditionally stable) characteristic. Therefore, the OS–SSP method is the most desirable method for pseudodynamic testing if the numerical stability criterion (Δt/T⩽0.5) is ensured for every vibration mode involved. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
132.
Kaj Sullivan Daniel Layton‐Matthews Matthew Leybourne James Kidder Zoltn Mester Lu Yang 《Geostandards and Geoanalytical Research》2020,44(2):349-362
The characterisation of relative copper isotope amount ratios (δ65Cu) helps constrain a variety of geochemical processes occurring in the geosphere, biosphere and hydrosphere. The accurate and precise determination of δ65Cu in matrix reference materials is crucial in the effort to validate measurement methods. With the goal of expanding the number and variety of available geological and biological materials, we have characterised the δ65Cu values of ten reference materials by MC‐ICP‐MS using C‐SSBIN model for mass bias correction. SGR‐1b (Green River shale), DOLT‐5 (dogfish liver), DORM‐4 (fish protein), TORT‐3 (lobster hepatopancreas), MESS‐4 (marine sediment) and PACS‐3 (marine sediment) have for the first time been characterised for δ65Cu. Additionally, four reference materials (with published δ65Cu values) have been characterised: BHVO‐1 (Hawaiian basalt), BIR‐1 (Icelandic basalt), W‐2a (diabase) and Seronorm? Trace Elements Serum L‐1 (human serum). The reference materials measured in this study possess complex and varied matrices with copper mass fractions ranging from 1.2 µg g?1 to 497 µg g?1 and δ65Cu values ranging from ?0.20‰ to 0.52‰ with a mean expanded uncertainty of ± 0.07‰ (U, k = 2), covering much of the natural copper isotope variability observed in the environment. 相似文献
133.
134.
135.
Using earthquakes relocated in north‐east Taiwan, we estimated b‐value distribution along a cross‐section located near the Ryukyu slab edge, and four b‐value anomalous areas are evidenced: (1) a high b‐value body lying on top of a low Vp, low Vs and high Vp/Vs sausage‐like body was considered as a region of enhanced partial melt or water supply above which seismicity occurs; (2) beneath the Ilan Plain, an anomalous area characterized by b‐values slightly higher than 1.1 might give evidence to the magma conduits to the Kueishantao Island; (3) above the Ryukyu Wadati‐Benioff zone, at depths ranging from 90 to 110 km, a high b‐value anomaly might correspond to the depth where dehydration occurs in the subducting oceanic plate; and (4) a low b‐value area located within the Ryukyu slab, at depths ranging from 70 to 90 km, might be linked to the compressive mechanisms shown by focal mechanisms and the bending of the subducting plate. 相似文献
136.
The aim of this paper is to present a methodology for identifying the soil parameters controlling the delayed behaviour from laboratory and in situ pressuremeter tests by using an elasto‐viscoplastic model (EVP‐MCC) based on Perzyna's overstress theory and on the elasto‐plastic Modified Cam Clay model. The influence of both the model parameters and the soil permeability was studied under the loading condition of pressuremeter tests by coupling the proposed model equations with Biot's consolidation theory. On the basis of the parametric study, a methodology for identifying model parameters and soil permeability by inverse analysis from three levels of constant strain rate pressuremeter tests was then proposed and applied on tests performed on natural Saint‐Herblain clay. The methodology was validated by comparing the optimized values of soil parameters and the values of the same parameters obtained from laboratory test results, and also by using the identified parameters to simulate other tests on the same samples. The analysis of the drainage condition and the strain rate effect during a pressuremeter test demonstrated the coupled influence of consolidation and viscous effects on the test results. The numerical results also showed that the inverse analysis procedure could successfully determine the parameters controlling the time‐dependent soil behaviour. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
137.
Samuel Teissier Sabine Sauvage Philippe Vervier Frédéric Garabétian José‐Miguel Sánchez‐Pérez 《水文研究》2008,22(3):420-428
A mass‐balance approach was used to estimate in‐stream processes related to inorganic nitrogen species (NH4+, NO2? and NO3?) in a large river characterized by highly variable hydrological conditions, the Garonne River (south‐west France). Studies were conducted in two consecutive reaches of 30 km located downstream of the Toulouse agglomeration (population 760 000, seventh order), impacted by modification of discharge regime and high nitrogen concentrations. The mass‐balance was calculated by two methods: the first is based on a variable residence time (VRT) simulated by a one‐dimensional (1‐D) hydraulic model; the second is a based on a calculation using constant residence time (CRT) evaluated according to hydrographic peaks. In the context of the study, removal of dissolved inorganic nitrogen (DIN) for a reach of 30 km is underestimated by 11% with the CRT method. In sub‐reaches, the discrepancy between the two methods led to a 50% overestimation of DIN removal in the upper reach (13 km) and a 43% underestimation in the lower reach (17 km) using the CRT method. The study highlights the importance of residence time determination when using modelling approaches in the assessment of whole stream processes in short‐duration mass‐balance for a large river under variable hydrological conditions. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
138.
The objective of this paper is to investigate the variation of geomorphology and runoff characteristics in saturated areas under different partial contributing area (PCA) conditions. Geomorphologic information and hydrologic records from two mid‐size watersheds in northern Taiwan were selected for analysis. The PCA ratio in the watershed during a storm was assumed equal to the ratio of the surface‐flow volume to the direct runoff volume from measured hydrologic data. The extents of PCA regions were then determined by using a topographic‐index threshold. Consequently, the geomorphologic factors in saturated and unsaturated areas could be calculated using a digital elevation model, and these factors could then be linked to a geomorphology‐based IUH model for runoff simulation, which can consider both the surface‐ and subsurface‐flow processes in saturated and unsaturated areas, respectively. The results show that geomorphologic characteristics in the saturated areas vary significantly with different PCA ratios especially for higher order streams. A large PCA ratio results in a sharp hydrograph because the quick surface flow dominates the runoff process, whereas the hydrologic response in a low PCA case is dominated by the delayed subsurface flow. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
139.
Holger L. Fröhlich Lutz Breuer Hans‐Georg Frede Johan A. Huisman Kellie B. Vaché 《水文研究》2008,22(12):2028-2043
The link between spatiotemporal patterns of stream water chemistry and catchment characteristics for the mesoscale Dill catchment (692 km2) in Germany is explored to assess the catchment scale controls on water quality and to characterize water sources. In order to record the spatiotemporal pattern, ‘snapshot sampling’ was applied during low, mean and high flow, including 73 nested sites throughout the catchment. Water samples were analysed for the elements Li, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Mo, Ba, Pb and U using inductively‐coupled‐plasma mass spectrometry, and for electric conductivity and pH. Principle component analysis and hierarchical cluster analysis were used to find typical element associations and to group water samples according to their hydrochemical fingerprints. This revealed regional hydrochemical patterns of water quality which were subsequently related to catchment attributes to draw conclusions about the controls on stream chemistry. It was found that various lithologic signals and anthropogenic point source inputs controlled the base flow hydrochemistry. During increased flows, stream waters were diluted causing additional hydrochemical variability in response to heterogeneous precipitation inputs and differences in aquifer storage capacities. The hydrochemical patterns further displayed in‐stream mixing of waters. This implied, that stream waters could be apportioned to the identified water sources throughout the catchment. The basin‐wide hydrochemical variability has the potential to outrange the tracer signatures typically inferred in studies at the hillslope scale and is able to strongly influence the complexity of the catchment output. Both have to be considered for further catchment scale tracer and modelling work. Despite the likelihood of non‐conservative behaviour, the minor and trace elements enhanced the rather qualitative discrimination of the various groundwater types, as the major cations were strongly masked by point source inputs. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
140.
An increasing impervious area is quickly extending over the Wu‐Tu watershed due to the endless demands of the people. Generally, impervious paving is a major result of urbanization and more recently has had the potential to produce more enormous flood disasters than those of the past. In this study, 40 available rainfall–runoff events were chosen to calibrate the applicable parameters of the models and to determine the relationships between the impervious surfaces and the calibrated parameters. Model inputs came from the outcomes of the block kriging method and the non‐linear programming method. In the optimal process, the shuffled complex evolution method and three criteria were applied to compare the observed and simulated hydrographs. The tendencies of the variations of the parameters with their corresponding imperviousness were established through regression analysis. Ten cases were used to examine the established equations of the parameters and impervious covers. Finally, the design flood routines of various return periods were furnished through use of approaches containing a design storm, block kriging, the SCS model, and a rainfall‐runoff model with established functional relationships. These simulated flood hydrographs were used to compare and understand the past, present, and future hydrological conditions of the watershed studied. In the research results, the time to peak of flood hydrographs for various storms was diminished approximately from 11 h to 6 h in different decrements, whereas peak flow increased respectively from 127 m3 s?1 to 629 m3 s?1 for different storm intensities. In addition, this study provides a design diagram for the peak flow ratio to help engineers and designers to construct hydraulic structures efficiently and prevent possible damage to human life and property. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献