首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25704篇
  免费   6143篇
  国内免费   8800篇
测绘学   3846篇
大气科学   4107篇
地球物理   5201篇
地质学   16041篇
海洋学   4901篇
天文学   489篇
综合类   2587篇
自然地理   3475篇
  2024年   205篇
  2023年   590篇
  2022年   1571篇
  2021年   1905篇
  2020年   1560篇
  2019年   1816篇
  2018年   1874篇
  2017年   1597篇
  2016年   1691篇
  2015年   1917篇
  2014年   1919篇
  2013年   2200篇
  2012年   2373篇
  2011年   2365篇
  2010年   2297篇
  2009年   2069篇
  2008年   1988篇
  2007年   1839篇
  2006年   1589篇
  2005年   1316篇
  2004年   989篇
  2003年   703篇
  2002年   737篇
  2001年   714篇
  2000年   616篇
  1999年   464篇
  1998年   264篇
  1997年   243篇
  1996年   218篇
  1995年   164篇
  1994年   176篇
  1993年   122篇
  1992年   106篇
  1991年   77篇
  1990年   65篇
  1989年   43篇
  1988年   48篇
  1987年   43篇
  1986年   21篇
  1985年   27篇
  1984年   5篇
  1983年   13篇
  1982年   11篇
  1981年   9篇
  1980年   8篇
  1979年   16篇
  1976年   5篇
  1958年   10篇
  1957年   8篇
  1954年   10篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
961.
Landslide-prone slopes in earthquake-affected areas commonly feature heterogeneity and high permeability due to the presence of cracks and fissures that were caused by ground shaking. Landslide reactivation in heterogeneous slope may be affected by preferential flow that was commonly occurred under heavy rainfall. Current hydro-mechanical models that are based on a single-permeability model consider soil as a homogeneous continuum, which, however, cannot explicitly represent the hydraulic properties of heterogeneous soil. The present study adopted a dual-permeability model, using two Darcy-Richards equations to simulate the infiltration processes in both matrix and preferential flow domains. The hydrological results were integrated with an infinite slope stability approach, attempting to investigate the hydro-mechanical behavior. A coarse-textured unstable slope in an earthquake-affected area was chosen for conducting artificial rainfall experiment, and in the experiment slope, failure was triggered several times under heavy rainfall. The simulated hydro-mechanical results of both single- and dual-permeability model were compared with the measurements, including soil moisture content, pore water pressure, and slope stability conditions. Under high-intensity rainfall, the measured soil moisture and pore water pressure at 1-m depth showed faster hydrological response than its simulations, which can be regarded as a typical evidence of preferential flow. We found the dual-permeability model substantially improved the quantification of hydro-mechanical processes. Such improvement could assist in obtaining more reliable landslide-triggering predication. In the light of the implementation of a dual-permeability model for slope stability analysis, a more flexible and robust early warning system for shallow landslides hazard in coarse-textured slopes could be provided.  相似文献   
962.
内蒙古东南部巴林右旗地区发育晚二叠世埃达克质火山岩,岩石组合为安山岩、粗安岩、英安岩及辉石安山岩,其LA-ICP-MS锆石U-Pb测年结果为256.7±2.7Ma,指示其形成于晚二叠世。地球化学特征显示,该套火山岩属准铝质-弱铝质中钾钙碱性岩石系列,具富Si(SiO_256%)、高Al(Al_2O_315%)、富Na、贫K、高Sr、低Yb和Y等特征,Na_2O/K_2O值为2.33~3.90,Mg~#值为35.3~60.8;稀土元素总量为96.69×10~(-6)~192.4×10~(-6)、轻重稀土元素分馏较明显((La/Yb)_N值为6.27~13.82),具正的Eu(δEu=1~1.67)异常,在原始地幔标准化蛛网图中,富集大离子亲石元素Rb、Ba、U,亏损高场强元素Nb、Ta,为O型(大洋型)埃达克质火山岩地球化学特征。综合区域资料,巴林右旗埃达克质火山岩是残留在地幔中的古亚洲洋残余洋壳部分熔融并受到地幔橄榄岩混染形成的,暗示晚二叠世存在古亚洲洋向华北板块俯冲消亡事件。  相似文献   
963.
刘淼  陈井胜  孙守亮  李斌  杨帆  张涛  汪岩  吴振 《地质通报》2018,37(9):1755-1759
为揭示北票(金-羊)盆地内北票组层序地层特征及沉积体系分布规律,应用层序地层学及沉积学理论和方法,综合利用野外露头、剖面等资料,建立了北票(金-羊)盆地北票组的层序地层格架,确定研究区的沉积相类型及分布规律。研究结果表明,北票(金-羊)盆地北票组可划分为2个三级层序,其内部可进一步划分为7个准层序组。在层序内识别出冲积扇、辫状河三角洲、湖泊3个沉积相。明确了沉积相的分布规律,向上形成由冲积扇到辫状河三角洲,再到湖相,最后是辫状河三角洲的沉积体系;平面上呈近北西—南东向展布的沉积体系,整体构成2个水进、水退的沉积体系。古地貌影响了底部冲积扇相沉积物的沉积特征。气候不仅影响了沉积物类型,且和湖平面变化共同控制了沉积物的演化规律。  相似文献   
964.
Rainfall-induced landslide is a common geohazard in tropical and humid regions. Capillary barrier system (CBS) is a popular and widely studied mitigating measure for rainfall-induced landslides. However, several previous studies have shown that the performance of the conventional CBS under intense rainfalls has not been particularly convincing. This paper aims to explore the feasibility and effectiveness of a newly proposed system, known as “biomediated capillary barrier system” (B-CBS) in minimizing water infiltration into soil. A one-dimensional soil column was used to investigate the infiltration characteristics of the proposed system. The results showed that the B-CBS of biomediated residual soil overlying original residual soil (Test IV) could effectively control the infiltration into soil by taking advantage of the less-permeable biomediated soil cover. The B-CBS of biomediated residual soil overlying gravelly sand (Test V) and the three-layered B-CBS of fine sand overlying gravelly sand and biomediated residual soil (Test VI) showed the best performance in terms of minimizing the water infiltration. A suction of about 5 kPa still remained in the soil column after 60 min of infiltration from the ponded water on the soil surface.  相似文献   
965.
In this study, the time-dependent damage process of granite is investigated utilizing two numerical simulation schemes based on continuous method and discontinuous method. Numerical creep tests are carried out with both simulation schemes and mechanical responses and fracture patterns of rock specimens are analyzed. The calibrated numerical models can successfully reflect the typical creep stages observed in the laboratory. The predicted lifetime is in accordance with the laboratory test data. Comparisons are made between the two simulation schemes. It is found that both schemes have unique features that can promote a genuine reflection of the time-dependent damage process of the brittle rocks.  相似文献   
966.
Generally, induced hydraulic fractures are generated by fluid overpressure and are used to increase reservoir permeability through forming interconnected fracture systems. However, in heterogeneous and anisotropic rocks, many hydraulic fractures may become arrested or offset at layer contacts under certain conditions and do not form vertically connected fracture networks. Mechanical layering is an important factor causing anisotropy in sedimentary layers. Hence, in this study, with a shale gas reservoir case study in the Longmaxi Formation in the southeastern Chongqing region, Sichuan Basin, we present results from several numerical models to gain quantitative insights into the effects of mechanical layering on hydraulic fracturing. Results showed that the fractured area caused by hydraulic fracturing indicated a linear relationship with the neighboring layer’s Young’s modulus. An increase of the neighboring layer’s Young’s modulus resulted in better hydraulic fracturing effects. In addition, the contact between two neighboring layers is regarded as a zone with thickness and mechanical properties, which also influences the effects of hydraulic fracturing in reservoirs. The initial hydraulic fracture was unable to propagate into neighboring layers under a relatively low contact’s Young’s modulus. When associated local tensile stresses exceeded the rock strength, hydraulic fractures propagated into neighboring layers. Moreover, with the contact’s Young’s modulus becoming higher, the fractured area increased rapidly first, then slowly and finally became stable.  相似文献   
967.
Quantifying land use patterns and functions is critical for modeling urban ecological processes, and an emerging challenge is to apply models at multiple spatial scales. Methods of determining the optimum scale of land use patterns are commonly considered using landscape metrics. Landscape metrics are quantitative indicators for analyzing landscape heterogeneity at the landscape level. In this study, due to their widespread use in urban landscape analyses and well-documented effectiveness in quantifying landscape patterns, landscape metrics that represent dominance, shape, fragmentation and connectivity were selected. Five metrics include Patch Density, Contagion, Landscape Shape Index, Aggregation Index and Connectivity. Despite a wide application of landscape metrics for land use studies, the majority mainly focuses on the qualitative analysis of the characteristics of landscape metrics. The previous models are limited in exploring the optimum scale of land use patterns for their lack of quantitation. Therefore, taking the City of Wuhan as an example, the land use unit was treated as a patch, and the landscape pattern metrics at different spatial scales were calculated and compared so as to find the optimum one. Furthermore, a mathematical model of landscape metrics was proposed to quantify the scale effect of urban land use patterns, generating a complementary tool to select the optimum scale. In addition, Analytic Hierarchy Process (AHP) was introduced to determine the respective weights of the chosen landscape metrics in this model. Fractal dimension was ultimately applied to verify the chosen optimum scale of our study region. The results indicated that 60 m is confirmed to be the optimum scale for capturing the spatial variability of land use patterns in this study area.  相似文献   
968.
Based on γ-radiation dose rate and radon concentration measurements and 238U, 232Th, 226Ra, and 40K radionuclide testing, this study identifies the radioactive anomalies of stone coal-bearing strata in East China and evaluates the natural radioactivity levels in the air, solid, water and plant media in the typical area of the regional stone coal-bearing layers. The stone coal-bearing strata in East China occur in the lower Cambrian system along the margin of the Yangtze block; additionally, the radioactive anomaly area is sporadically distributed in the stone coal-bearing layers. The background values of 238U, 232Th, 226Ra, and 40K are higher in the stone coal-bearing areas, and the spatial distribution of these natural radionuclides shows significant variability. 238U and 226Ra clearly accumulate in the coal, coal gangue and soil and are the main sources of the environmental radiation in coal mines. The γ-radiation shows a higher background value in the stone coal-bearing area, and this radioactive pollution cannot be ignored. Typically, the effective dose of γ-radiation exceeds the limit value of 5 mSv/a, and the total α and total β concentrations of the groundwater are 10–30 times the limit value at some points. The residents near the mining area are subjected to a higher radiation dose, and the groundwater, building materials, and plants have been contaminated by the radioactive pollution sporadically through time. It is necessary to strengthen the monitoring work of radioactive environments and to take appropriate control measures.  相似文献   
969.
The seepage evolution behavior of compact rock is significant for the stability and safety of many engineering applications. In this research, both hydrostatic and triaxial compression tests were conducted on compact sandstone using an inert gas, namely argon. A triaxial compression test with a water permeability measurement was carried out to study the difference between the gas permeability and water permeability evolutions during the complete stress–strain process. Based on the experimental data, the hydrostatic stress-dependent gas permeability was discussed firstly. A second-order function was proposed to predict and explain the gas slippage effect. The mechanical properties and crack development of the sandstone samples were discussed to better understand the permeability evolution with crack growth during the complete stress–strain process. The results show that the gas permeability evolution can be divided into five stages according to the different crack growth stages. Then, the permeability changes in the crack closure stress \( \sigma_{\text{cc}} \), crack initiation stress \( \sigma_{\text{ci}} \), crack damage stress \( \sigma_{\text{cd}} \) and peak stress \( \sigma_{\text{p}} \) with confining pressures were analyzed. Finally, we found that the difference between the corrected gas permeability and water permeability can be attributed to the interaction between the water and sandstone grains.  相似文献   
970.
Steep coal seam mining activities will frequently occur during the next few decades in China. In this study, both experimental and numerical methods are employed to investigate the coal drawing from thick steep seam with longwall top coal caving mining. A series of analyses is performed to investigate the features of the drawing body, the distribution of top coal recovery ratio and the shape of the rock flow under steep conditions. The results indicate that the drawing body of top coal develops prior to upper side of the panel face obviously, and the top coal in the central part of the panel has a higher recovery ratio than that in the lower and upper parts in steep coal seam with caving mining method. The flow paths of the fragmented top coal are nearly straight lines moving towards the drawing window, and the fastest path maintains a constant angle with the plumb line. The spatial shape of the rock flow indicates “bidirectional asymmetry,” which results from the presence of the shield beam and dip angle of the coal seam; thus, this is the root cause of the appearance of the drawing body’s prior development towards the upper side of the panel. The field observation data indicates the same distribution of top coal recovery as that in the physical experiment and numerical simulation. Furthermore, suggested measurements are proposed to improve top coal recovery in steep seam mining based on the engineering practice of Dayuan coal mine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号