首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   682篇
  免费   31篇
  国内免费   10篇
测绘学   41篇
大气科学   108篇
地球物理   167篇
地质学   252篇
海洋学   44篇
天文学   60篇
综合类   1篇
自然地理   50篇
  2023年   3篇
  2022年   5篇
  2021年   22篇
  2020年   38篇
  2019年   19篇
  2018年   26篇
  2017年   27篇
  2016年   43篇
  2015年   32篇
  2014年   37篇
  2013年   37篇
  2012年   40篇
  2011年   58篇
  2010年   48篇
  2009年   49篇
  2008年   45篇
  2007年   28篇
  2006年   23篇
  2005年   13篇
  2004年   18篇
  2003年   19篇
  2002年   7篇
  2001年   10篇
  2000年   7篇
  1999年   3篇
  1998年   6篇
  1997年   3篇
  1995年   6篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   9篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有723条查询结果,搜索用时 15 毫秒
711.
We describe in-flight calibration of the Cassini Imaging Science Sub-system narrow- and wide-angle cameras using data from 2004 to 2009. We report on the photometric performance of the cameras including the use of polarization filters, point spread functions over a dynamic range greater than 107, gain and loss of hot pixels, changes in flat fields, and an analysis of charge transfer efficiency. Hot pixel behavior is more complicated than can be understood by a process of activation by cosmic ray damage and deactivation by annealing. Point spread function (PSF) analysis revealed a ghost feature associated with the narrow-angle camera Green filter. More generally, the observed PSFs do not fall off with distance as rapidly as expected if diffraction were the primary contributor. Stray light produces significant signal far from the center of the PSF. Our photometric analysis made use of calibrated spectra from eighteen stars and the spectral shape of the satellite Enceladus. The analysis revealed a shutter offset that differed from pre-launch calibration. It affects the shortest exposures. Star photometry results are reproducible to a few percent in most filters. No degradation in charge transfer efficiency has been detected although uncertainties are large. The results of this work have been digitally archived and incorporated into our calibration software CISSCAL available online.  相似文献   
712.
713.
Preface     
  相似文献   
714.
715.
I employ an ensemble of hydrodynamical simulations and the xspec mekal emission model to reproduce observable spectral and flux-weighted temperatures for 24 clusters. Each cluster is imaged at 16 points in its history, which allows the investigation of evolutionary effects on the mass–temperature relation. In the zero-redshift scaling relations, I find no evidence for a relationship between cluster temperature and formation epoch for those clusters that acquired 75 per cent of their final mass since a redshift of 0.6. This result holds for both observable and intrinsic intracluster medium temperatures, and implies that halo formation epochs are not an important variable in analysis of observable cluster temperature functions.  相似文献   
716.
The ROSAT All-Sky Survey revealed soft X-ray emission on kiloparsec scales towards the Galactic center. Separately, it has also been observed that the cosmic ray intensity (measured via γ-ray emission) rises only very slowly towards the center of the Galaxy, counter to expectations based on the greater number of cosmic ray sources there. A thermal and cosmic-ray driven wind could potentially explain both of these observations. We find that a cosmic-ray and thermally driven wind fits the X-ray observations well; in fact, a wind fits significantly better than an earlier-proposed static-polytrope gas model.  相似文献   
717.
In this paper, a model is developed for the dynamics of a system of two bodies whose material points are under the influence of a central gravitational force. One of the bodies is assumed to be rigid and spherically symmetric, while the other is assumed to be deformable. To develop a tractable model for the system, the deformable body is modeled using Cohen and Muncaster's theory of a pseudo-rigid body. The resulting model of the system has several of the features, such as angular momentum conservation, exhibited by more restrictive models. We also show how the self-gravitation of the deformable body can be accommodated using appropriate constitutive equations for a force tensor. This enables our model to subsume many existing models of ellipsoidal figures of equilibrium. After the model and its conservations have been discussed, attention is restricted to steady motions of the system. Several results, which generalize recent works on rigid satellites, are established for these motions. For a specific choice of constitutive equations for the pseudo-rigid body, we determine the steady motions with the aid of a numerical continuation method. These results can also be considered as generalizations of earlier works on Roche's ellipsoids of equilibrium.  相似文献   
718.
Pulsating Stars     
Modern long-baseline interferometers are capable of resolving stellar diameters in the range of one to several milli-arcseconds with measurement precision approaching a few percent. This level of precision allows astronomers to directly resolve diameter changes associated with pulsation for various classesc of stars, including Cepheids and Miras. For several nearby Cepheids itis relatively straightforward to apply a Baade-Wesselink analysis and hence directly measure the distance to the Cepheid with a high degree of precision. This field is still quite new; I expect that in the near term several new interferometers will provide direct Cepheid distances to perhaps a few tens of Galactic Cepheids. However, equally important will be direct measurements of the atmospheric properties (in particular limb darkening) of these stars. Such measurements should help reduce the considerable systematic uncertainties that remain. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
719.
The Hubble constant can be constrained using the time delays between multiple images of gravitationally lensed sources. In some notable cases, typical lensing analyses assuming isothermal galaxy density profiles produce low values for the Hubble constant, inconsistent with the result of the HST Key Project  (72 ± 8 km s−1 Mpc−1)  . Possible systematics in the values of the Hubble constant derived from galaxy lensing systems can result from a number of factors, for example, neglect of environmental effects, assumption of isothermality, or contamination by line-of-sight structures. One additional potentially important factor is the triaxial structure of the lensing galaxy halo; most lens models account for halo shape simply by perturbing the projected spherical lensing potential, an approximation that is often necessary but that is inadequate at the levels of triaxiality predicted in the cold dark matter paradigm. To quantify the potential error introduced by this assumption in estimates of the Hubble parameter, we strongly lens a distant galaxy through a sample of triaxial softened isothermal haloes and use an Markov Chain Monte Carlo method to constrain the lensing halo profile and the Hubble parameter from the resulting multiple image systems. We explore the major degeneracies between the Hubble parameter and several parameters of the lensing model, finding that without a way to accurately break these degeneracies accurate estimates of the Hubble parameter are not possible. Crucially, we find that triaxiality does not significantly bias estimates of the Hubble constant, and offer an analytic explanation for this behaviour in the case of isothermal profiles. Neglected triaxial halo shape cannot contribute to the low Hubble constant values derived in a number of galaxy lens systems.  相似文献   
720.
Planets result from a series of processes within a circumstellar disk. Evidence comes from the near planar orbits in the Solar System and other planetary systems, observations of newly formed disks around young stars, and debris disks around main-sequence stars. As planet-hunting techniques improve, we approach the ability to detect systems like the Solar System, and place ourselves in context with planetary systems in general. Along the way, new classes of planets with unexpected characteristics are discovered. One of the most recent classes contains super Earth-mass planets orbiting a few AU from low-mass stars. In this contribution, we outline a semi-analytic model for planet formation during the pre-main sequence contraction phase of a low-mass star. As the star contracts, the “snow line”, which separates regions of rocky planet formation from regions of icy planet formation, moves inward. This process enables rapid formation of icy protoplanets that collide and merge into super-Earths before the star reaches the main sequence. The masses and orbits of these super-Earths are consistent with super-Earths detected in recent microlensing experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号