首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  国内免费   3篇
地球物理   3篇
地质学   29篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2014年   2篇
  2012年   4篇
  2010年   4篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2004年   1篇
  2001年   2篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
21.
The reality of the global‐scale sedimentation breaks remains controversial. A compilation of data on the Jurassic–Cretaceous unconformities in a number of regions with different tectonic settings and character of sedimentation, where new or updated stratigraphic frameworks are established, permits their correlation. Unconformities from three large reference regions, including North America, the Gulf of Mexico, and Western Europe, were also considered. The unconformities, which encompass the Jurassic‐Cretaceous, the Lower–Upper Cretaceous and the Cretaceous–Palaeogene transitions are of global extent. Other remarkable unconformities traced within many regions at the base of the Jurassic and at the Santonian–Campanian transition are not known from reference regions. A correlation of the Jurassic–Cretaceous global‐scale sedimentation breaks and eustatic curves is quite uncertain. Therefore, definition of global sequences will not be possible until eustatic changes are clarified. Activity of mantle plumes is among the likely causes of the documented unconformities.  相似文献   
22.
Based on comprehensive studies of fluid inclusions in quartz formed at different stages of hydrothermal process, we consider the physicochemical conditions of formation of epithermal ores (K1) in the Balei ore field. The limiting parameters of hydrothermal process have been established: 353–131 °C, 150–30 bars, and salt concentrations of 7.6–0.5 wt.%-NaCl equiv. A specific feature of the ore-forming process at the Balei deposits is a rapid drop in temperature and pressure, which is typical of open hydrothermal systems. The temperature increase at the beginning of each stage evidences pulse-like ore formation. The productive stage coincides with the initiation of a drastic decrease in temperature (<225 °C) and salt concentration in the solution. The deposits resulted from the functioning of the common Balei ore-magmatic system at shallow depths with a high permeability of the host rocks. High-K calc-alkalic magmas might have been sources of gold mineralization. The ore formation zone is localized above intrusive bodies near their roof. It is not ruled out that the Balei gold was partly borrowed from the products of the early cycles (J2-3) of gold mineralization and from the host rocks.  相似文献   
23.
24.
It is proposed that there are three types of gold deposits in Eastern and Central Transbaikalia (Trans-Baikal province), namely: (i) high-sulphide intrusion-related deposits with some signs of porphyry deposits, (ii) low-sulphide intrusion-related deposits, and (iii) low-sulphide epithermal Au–Ag deposits. Most of the gold deposits belong to the first two types, and their ages are Middle–Late Jurassic. Deposits of the third type are not numerous, and their age is Early Cretaceous.The majority of the gold mineralization is spatially related to the two branches of the Mongolia–Okhotsk suture, along which Siberia collided, at the Early/Middle Jurassic boundary, with the Mongolia–North China continent and the Onon island-arc terrane located between the two continents. Collision-related thrusting, folding and magmatism lasted until the latest Jurassic, when they gave way to post-collisional rifting that continued until the end of Early Cretaceous.According to their age, relation to magmatism and tectonic framework, the intrusion-related deposits (high- and low-sulphide) were formed in a regional collisional setting. Extensional environments at that time existed only in local areas in the roofs of great magmatic chambers. Low-sulphide epithermal deposits were formed during Early Cretaceous post-collisional rifting.  相似文献   
25.
Abstract: Gold mineralization of the Daerae mine represents the first recognized example of the Jurassic gold mineralization in the Sangju area, Korea. It occurs as a single stage of quartz veins that fill fault fractures in Precambrian gneiss of the central‐northern Sobaegsan Massif. The mineralogical characteristics of quartz veins, such as the simple mineralogy and relatively gold‐rich (65–72 atomic % Au) nature of electrum, as well as the CO2–rich and low salinity nature of fluid inclusions, are consistent with the ‘mesothermal‐type’ gold deposits previously recognized in the Youngdong area (about 50 km southwest of the Sangju area). Ore fluids were evolved mainly through CO2 immiscibility at temperatures between about 250 and 325 C. Vein sulfides characteristically have negative sulfur isotopic values (–1.9 to +0.2 %), which have been very rarely reported in South Korea, and possibly indicate the derivation of sulfur from an ilmenite‐series granite melt. The calculated O and H isotopic compositions of hydrothermal fluids at Daerae (δ18Owater = +5.2 to +5.9 %; δDwater = –59 to –67 %) are very similar to those from the Youngdong area, and indicate the important role of magmatic water in gold mineralization. The 40Ar–39Ar age dating of a pure alteration sericite sample yields a high‐temperature plateau age of 188.3 0.1 Ma, indicating an early Jurassic age for the gold mineralization at Daerae. The lower temperature Ar‐Ar plateau defines an age of 158.4 2.0 Ma (middle Jurassic), interpreted as reset by a subsequent thermal effect after quartz vein formation. The younger plateau age is the same as the previously reported K‐Ar ages (145–171 Ma) for the other ‘mesothermal–type’ gold deposits in the Youngdong and Jungwon areas, Korea, which are too young in view of the new Jurassic Ar‐Ar plateau age (around 188 Ma).  相似文献   
26.
The quantitative sea-level curve in the eastern part of the East European Platform during the Early Cretaceous first compiled for this region is based on the results of analysis of the corresponding deposits and the bathymetric distribution of benthic foraminifers in their sections. This quantitative curve is correlated with the sea-level curve constructed for central areas of the East European Platform [9]. According to [9], the basin in the central part of the platform was as deep as 110 m, while in its eastern areas the depth amounted to 350 m. It is revealed that tectono-eustatic cycles defined previously in the central part of the platform and cycles (megasequences) in its eastern areas are asynchronous and are characterized by different orders. Such asynchrony is determined by the different tectonic trends in these regions during the Early Cretaceous.  相似文献   
27.
An event-based depositional model for the Paleocene—Eocene sandy–clayey–siliceous deposits of the Russian Platform was proposed. The model was based on pulsational input of pyroclastic material and intrusion of sandy injectites. These processes should be taken into account to identify the stratigraphic position of the Paleocene–Eocene lithostratigraphic units in the eastern, southeastern, and southern parts of the Russian Platform.  相似文献   
28.
The Darasun ore field situated in the southern West Stanovoi Terrane near the Mongolia-Okhotsk Suture comprises the Darasun (>100 t Au), Talatui (~38.2 t Au), and Teremki (3 t Au) lode gold deposits. In the opinion of many researchers, the Darasun deposit is spatially and paragenetically linked to granodiorite porphyry of the Amudzhikan Complex and related metasomatic rocks (beresites). Whole-rock samples of granodiorite porphyry, monomineralic fractions of plagioclase, K-feldspar, and biotite, as well as sericite from beresite (26 samples in total), were analyzed by the Rb-Sr method. Eight biotite and sericite samples were analyzed by the K-Ar method. The Rb-Sr mineral isochrons obtained for individual granodiorite porphyry samples yielded initial 87Sr/86Sr ratios varying from 0.70560 to 0.70591. The consistent results of both methods allowed us to accept the ages of granodiorite porphyry and beresite as 160.5 ± 0.4 and 159.6 ± 1.5 Ma, respectively. The age of granodiorite porphyry of the Amudzhikan Complex of 160.5 ± 0.4 Ma corresponds to the boundary between the Early and Middle Jurassic and marks the completion of collision between the East Siberian and Mongolia-China continents and related orogeny. Since that time, the eastern Transbaikal region has been involved in the postorogenic (within-plate) stage of evolution, characterized by the formation of large gold, uranium, and other ore deposits.  相似文献   
29.
Arabian Journal of Geosciences - Surface albedo is a key parameter in earth energy budget and global climate change studies. In this aspect, variation in vegetation covers is one of the most...  相似文献   
30.
The mineral composition of the Talatui gold deposit has been studied with modern methods. Previously unknown minerals (ilmenite, siegenite, glaucodot, wittichenite, matildite, hessite, pilsenite, zircon, tremolite, cummingtonite, hercynite, and goethite) have been identified in the ore. A high Re content has been detected in molybdenite. The spatiotemporal separation of Au and Ag is caused by different mineral species of these elements and their diachronous precipitation during the ore-forming process. Gold crystallized along with early mineral assemblages, beginning from virtually pure gold (the fineness is 996). Silver precipitated largely at the end of the process as hessite (Ag2Te) and matildite (AgBiS2). The temperature of ore deposition varied from 610 to 145°C, the pressure was 3370–110 bar, and the salt concentration ranged from 56.3 to 0.4 wt % NaCl equiv. The heterogeneous state (boiling) of fluid at the early stages has been documented. The chemical and isotopic compositions of the fluid testify to its magmatic nature and the participation of meteoric water at late stages in the ore-forming process. Thermodynamic modeling reproduces the main specific features of ore formation, including separation of Au and Ag. A physicochemical model of the gold mineralization in the Darasun ore district has been proposed. On the basis of several attributes, the Talatui deposit has been referred to the prophyry gold-copper economic type.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号