首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   2篇
  国内免费   1篇
地球物理   4篇
地质学   28篇
海洋学   16篇
综合类   1篇
  2021年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2011年   3篇
  2010年   1篇
  2009年   10篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  1998年   2篇
  1997年   2篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
31.
Muddy carbonate deposits near the Dry Tortugas, Florida, are characterized by high organic carbon remineralization rates. However, approximately half of the total sedimentary organic matter potentially supporting remineralization is occluded in CaCO3 minerals (intracrystalline). While a portion of nonintracrystalline organic matter appears to cycle rapidly, intracrystalline organic matter has an approximately constant concentration with depth, suggesting that as long as its protective mineral matrix is intact, it is not readily remineralized. Organic matter in excess of intracrystalline organic matter that is preserved may have a variety of mineral associations (e.g., intercrystalline, adsorbed or detrital). In surface sediment, aspartic acid contributed ∼22 mole % and ∼50 mole % to nonintracrystalline and intracrystalline pools, respectively. In deeper sediment (1.6-1.7m), the composition of hydrolyzable amino acids in both pools was similar (aspartic acid ∼40 mole %). Like amino acids, intracrystalline and nonintracrystalline fatty acids have different compositions in surface sediments, but are indistinguishable at depth. These data suggest that preserved organic matter in the nonintracrystalline pool is stabilized by its interactions with CaCO3. Neutral lipids are present in very low abundances in the intracrystalline pool and are extensively degraded in both the intracrystalline and nonintracrystalline pools, suggesting that mineral interactions do not protect these compounds from degradation. The presence of chlorophyll-a, but absence of phytol, in the intracrystalline lipid pool demonstrates that chloropigments are present only in the nonintracrystalline pool. Sedimentary chloropigments decrease with depth at similar rates in Dry Tortugas sediments as found in alumino-silicate sediments from the Long Island Sound, suggesting that chloropigment degradation is largely unaffected by mineral interactions. Overall, however, inclusion and protection of organic matter by biominerals is a major pathway for organic matter preservation in this low-organic carbon, biomineral-rich regime.  相似文献   
32.
Principal components analysis (PCA) is a multivariate data analysis tool that can be used to recombine the variables of a large multivariate dataset in such a way that the first few variables of the reconstructed dataset account for the majority of the variance in the data. Application of PCA in marine geochemistry has become quite common in recent years. In this study, we illustrate the use of PCA through examples that arose while investigating the geochemistry of sinking particles during the MedFlux project. The examples presented do not simply repeat the analyses of the original study, but instead extend them in the context of simultaneous application of PCA and cluster analysis. Our results show that constructing a one dimensional (1D) “degradation index” using only the first principal component (PC) is in most cases oversimplified, and that constructing 2D or 3D “degradation trajectories” with the first 2 or 3 PCs is more informative. Use of the first three PCs is indicated when the variance explained by the third PC is comparable in magnitude to that explained by the second PC in the reconstructed dataset. We also discuss the use of scree plots and cluster analysis in helping decide whether the third PC is needed to capture the essential information in the dataset.  相似文献   
33.
Vertical profiles of dimethylsulfide (DMS) and β-dimethylsulfoniopropionate, particulate (pDMSP) and dissolved (dDMSP), were measured biweekly in the upper 140 m of the Sargasso Sea (32°10′N, 64°30′W) during 1992 and 1993. DMS and pDMSP showed strong, but different, seasonal patterns; no distinct intra-annual pattern was observed for dDMSP. During winter, concentrations of DMS were generally less than 1 nmol l−1 at all depths, dDMSP was less than 3 nmol l−1 and pDMSP was less than 8 nmol l−1. In spring, concentrations of both dDMSP and pDMSP rose, on a few occasions up to 20 nmol l−1 in the dissolved pool and up to 27 nmol l−1 in the particulate pool. These increases, due to blooms of DMSP-containing phytoplankton, resulted in only minor increases in DMS concentrations (up to 4 nmol l−1). Throughout the summer, the concentrations of DMS continued to increase, reaching a maximum in August of 12 nmol l−1 (at 30 m depth). There was no concomitant summer increase in dDMSP or pDMSP. The differences among the seasonal patterns of DMS, dDMSP, and pDMSP suggest that the physical and biological processes involved in the cycling of DMS change with the seasons. There is a correlation between the concentration of DMS and temperature in this data set, as required by some of the climate feedback models that have been suggested for DMS. A full understanding of the underlying processes controlling DMS is required to determine if the temperature-DMS pattern is of significance in the context of global climate change.  相似文献   
34.
Sterol and alkenone compositions in suspended particle and surface sediment samples collected in the Northwestern Mediterranean Sea during the MEDFLUX program were used to evaluate the relative importance of biotic and abiotic degradation processes on marine organic matter. Alkenone concentrations decreased much more rapidly (~ 500 fold) between 5 and 800 m than Δ5-sterols (~ 100-fold) or POC (~ 100-fold). The diverse functional groups attached to the stable tetracyclic carbon skeleton of Δ5-sterols appeared to be useful for estimating the relative effects of biotic vs. abiotic (photooxidation and autoxidation) degradation. Products of abiotic degradation predominated over products of biotic degradation in suspended particles in the NW Mediterranean. For alkenones, the U37K′ index increased from 0.43 to 0.55 with increasing water depth, and a good correlation between variations of U37K′ and concentrations of specific Δ5-sterol autoxidation products points to selective autoxidation of alkenones in suspended particles. Stereomutated alkenones (with cis double bonds) were detected in the surface sediment, allowing us to estimate that stereomutation resulted in a + 0.05 increase in U37K′. Therefore, abiotic degradation may be another factor effect on alkenone-derived paleothermometry.  相似文献   
35.
Particulate matter and interfacial sediment from a seasonally anoxic coastal salt pond were analyzed for fatty acids and sterols to examine variations in organic sources, and compositional changes across the oxic-anoxic interface in the water column and at the sediment-water interface. Fatty acid distributions in suspended particles varied seasonally and as a function of depth. Fatty acids of algal origin (e.g. 16:3, 16:4, 18:3, 18:4) were abundant in particles in oxic surface waters, but these labile components were depleted in particles from the anoxic zone which instead were enriched in bacterial fatty acids (e.g. 16:1Δ9, 18:1Δ11, anteiso-C15). Sterol distributionsvaried less than fatty acid distributions and particles throughout the water column reflected an upper water algal source with little in situ alteration. There was evidence for an in situ conversion of Δ5-stenols to 5(α)H-stanols in suspended particles in the anoxic zone. Sinking particles and the interfacial sediment were compositionally similar to each other, but different from suspended particles. These data reflect differences in particle source, transport and transformation processes occuring in the water column.  相似文献   
36.
Sediments of shallow lakes contain besides plankton pigments as well pigments of purple non-sulfur and purple sulfur bacteria. A thin-layer chromatographic method was developed for the separation of the most important pigments of purple bacteria beside plankton pigments. The new method was examined in three different lakes for a stratigraphic analysis of bacteria pigments beside plankton pigments and the results were discussed subsequently.   相似文献   
37.
Fecal pellets from the pelagic crab Pleuroncodes planipes were a substantial portion of the particulate organic matter in a sediment trap deployed at the bottom of the mixed layer in the eastern tropical North Pacific Ocean. The lipids of fresh P. planipes feces were compared to lipids of the sediment trap material, of mixed zooplankton which may comprise part of the diet of the crab, and of the crab itself in order to elucidate the source of organic compounds found in the trap. Hydrocarbons, wax esters, triacylglycerols, steroidal alcohols, steroidal ketones, and fatty acids were determined by capillary gas chromatography and gas chromatography/mass spectrometry. Significant input of lipids via sedimentation of crab fecal material is indicated, and modification of dietary lipid within the gut of the crab is inferred. Labile dietary fatty acids are depleted and sterols enriched in the fecal pellets and trap material relative to the zooplankton and crab. Nuclear saturated and unsaturated 3-ketosteroids and unsaturated steroidal hydrocarbons were detected in the crab, its feces, and in the sediment trap particulate material.  相似文献   
38.
Laboratory incubation experiments were conducted to determine the behavior of sterols at the sediment–water interface in oxic and anoxic sediments. Both plankton and 4- -cholesterol were used as tracers. Cholesterol was rapidly degraded at the sediment–water interface: 55% of -cholesterol was lost from sediments under anoxic conditions and 78% under oxic conditions over three and one-half months. About 3% of initially-added free radiolabel was incorporated into a bound pool that was released only by saponification of solvent-extracted sediment. Less than 1% of initially-added radiolabel remained in pore waters after three and one-half months. Rate constants for degradation of cholesterol in oxic and anoxic surficial sediments were estimated by tracking variations in radioactivity and sterol concentration as a function of time. We discuss our results in terms of factors affecting sterol degradation in coastal marine sediments, including molecular structure, sediment matrix effect, and redox conditions.  相似文献   
39.
A systematic investigation of fluxes and compositions of lipids through the water column and into sediments was conducted along the U.S. JGOFS EgPac transect from l2°N to l5°S at 140°W. Fluxes of lipids out of the euphotic zone varied spatially and temporally, ranging from ≈0.20 – 0.6 mmol lipid-C m−2 day−1. Lipid fluxes were greatly attenuated with increasing water column depth, dropping to 0.002-0.06 mmol lipid-C m−2 day−1 in deep-water sediment traps. Sediment accumulation rates for lipids were ≈ 0.0002 – 0.00003 mmol lipid-C m−2 day−1. Lipids comprised ≈ 11–23% of Corg in net-plankton, 10–30% in particles exiting the euphotic zone, 2–4% particles in the deep EgPac, and 0.1-1 % in sediments. Lipids were, in general, selectively lost due to their greater reactivity relative to bulk organic matter toward biogeochemical degradation in the water column and sediment. Qualitative changes in lipid compositions through the water column and into sediments are consistent with the reactive nature of lipids. Fatty acids were the most labile compounds, with polyunsaturated fatty acids (PUFAs) being quickly lost from particles. Branchedchain C15 and C17 fatty acids increased in relative abundance as particulate matter sank and was incorporated into the sediment, indicating inputs of organic matter from bacteria. Long-chain C39 alkenones of marine origin and long-chain C20-C30 fatty acids, alcohols and hydrocarbons derived from land plants were selectively preserved in sediments. Compositional changes over time and space demonstrate the dynamic range of reactivities among individual biomarker compounds, and hence of organic matter as a whole. A thorough understanding of biogeochemical reprocessing of organic matter in the oceanic water column and sediments is, thus, essential for using the sediment record for reconstructing past oceanic environments.  相似文献   
40.
Lignin and pigment biomarkers were analyzed in surface sediments of the Louisiana Continental margin (LCM) to distinguish differences in the degradative state of sedimentary organic matter along and between two major depositional pathways (along shore and offshore to the Mississippi Canyon) from Southwest (SW) Pass in July 2003. Barataria Bay, an inter-distributary estuary, was also assessed as a potential source of terrestrial organic matter to the LCM. Sediment signatures taken along the same pathways after Hurricane Ivan (October 2004) were compared with the pre-Ivan signature to elucidate carbon dynamics after major hurricane events. Density fractions were investigated at key stages across the LCM. Mississippi Canyon sediments are a depocenter for labile and refractory organic matter derived from river and previously deposited shelf sediments. Barataria Bay material may be a contributing source of sedimentary organic matter in shallow shelf areas bordering the bay and is thus potentially important in carbon cycling in sediments of these shallow areas; however, our results show that organic matter inputs from the bay were likely rapidly decomposed and/or diluted. Hurricane Ivan mobilized sedimentary organic carbon (SOC) offshore and homogenized terrestrial sediment parameters and gradients. As observed through pigment concentrations sediments tended to equilibrate to a more steady-state condition within months of the disturbance. Insights from density fractions show that selective degradation and aggregation/flocculation processes were also very important processes during cross-shelf transport. Zooplankton grazing, largely on diatoms and other algae, was a shelf wide phenomenon, however, grazing products dominated the marine-derived SOC in margin sediments west of the birdsfoot delta indicated by the abundance of steryl chlorin esters (SCEs).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号