首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   5篇
大气科学   1篇
地质学   11篇
  2024年   1篇
  2023年   2篇
  2018年   1篇
  2015年   1篇
  2012年   3篇
  2010年   1篇
  1993年   2篇
  1992年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
11.
The morphology, REE geochemistry and U-Pb geochronology of zircons from quartz monzodiorite in the Sunzhuang area, Fanshi County, Shanxi Province are presented in this study. The zircon crystals can be classified into four main types as: AB, L, S and P, and 24 subtypes such as AB4, AB5, L5, and S3. The maximum crystallization temperature of zircon was estimated as 850°C, with the minimum of 550°C. The peak temperatures of the zircon crystallization range from 650°C to 700°C. The abundances of Th and U in the zircon grains show large variation with the Th/U values 0.4. The Th and U values also show a positive correlation in most zircons. The REE abundance of zircon in the quartz monzodiorite ranges from 280.4 ppm to 2143 ppm with an average of 856.4 ppm. The chondrite normalized zircon REE patterns show two types, one is characterized by HREE enrichment and LREE depletion with positive Ce-anomaly and negative Eu-anomaly whereas the other is HREE enriched and LREE depleted with negative Eu-anomaly but without positive Ce-anomaly, and relatively flat patterns. The LA-ICP-MS U-Pb geochronology on the zircons yields a mean age of 133±0.87 Ma. Our data on zircon morphology, composition and U-Pb geochronology reveal that the parent magma of the quartz monzodiorite which was emplaced during late Yanshanian had a mixed crust-mantle source, with crustal components dominating. The magma is inferred to have been water rich and alkaline with initial high oxygen fugacity. Post-magmatic hydrothermal activity occurred under relatively reducing conditions which was conductive for gold precipitation in the Yixingzhai gold deposit.  相似文献   
12.
Abstract Incipient charnockite formation within amphibolite facies gneisses is observed in South India and Sri Lanka both as isolated sheets, associated with brittle fracture, and as patches forming interconnected networks. For each mode of formation, closely spaced drilled samples across charnockite/gneiss boundaries have been obtained and δ13C and CO2 abundances determined from fluid inclusions by stepped-heating mass spectrometry. Isolated sheets of charnockite (c.50 mm wide) within biotite–garnet gneiss at Kalanjur (Kerala, South India) have developed on either side of a fracture zone. Phase equilibria indicate low-pressure charnockite formation at pressures of 3.4 ± 1.0 kbar and temperatures of about 700°C (for XH2O= 0.2). Fluid inclusions from the charnockite are characterized by δ13C values of ?8% and from the gneiss, 2 m from the charnockite, by values of ?15%. The large CO2 abundances and relatively heavy carbon-isotope signature of the charnockite can be traced into the gneiss over a distance of at least 280 mm from the centre of the charnockite, whereas the reaction front has moved only 30 mm. This suggests that fluid advection has driven the carbon-isotope front through the rock more rapidly than the reaction front. The carbon-front/reaction-front separation at Kalanjur is significantly larger than the value determined from a graphite-bearing incipient charnockite nearby, consistent with the predictions of one-dimensional advection models. Incipient charnockites from Kurunegala (Sri Lanka) have developed as a patchy network within hornblende–biotite gneiss. CO2 abundances rise to a peak near one limb of the charnockite, and isotopic values vary from δ13C of c.?5.5% in the gneiss to ?9.5% in the charnockite. The shift to lighter values in the charnockite can be ascribed to the formation of a CO2-saturated partial melt in response to influx of an isotopically light carbonic fluid. Thus, incipient charnockites from the high-grade terranes of South India and Sri Lanka reflect a range of mechanisms. At shallower structural levels non-pervasive CO2 influxed along zones of brittle fracture, possibly associated with the intrusion of charnockitic dykes. At deeper levels, in situ melting occurred under conditions of ductile deformation, leading to the development of patchy charnockites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号