首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84789篇
  免费   1021篇
  国内免费   708篇
测绘学   2200篇
大气科学   5785篇
地球物理   15568篇
地质学   32803篇
海洋学   7299篇
天文学   18849篇
综合类   333篇
自然地理   3681篇
  2022年   535篇
  2021年   864篇
  2020年   903篇
  2019年   989篇
  2018年   4138篇
  2017年   3790篇
  2016年   3467篇
  2015年   1316篇
  2014年   2308篇
  2013年   3746篇
  2012年   3197篇
  2011年   5022篇
  2010年   4416篇
  2009年   5241篇
  2008年   4394篇
  2007年   5019篇
  2006年   2952篇
  2005年   2323篇
  2004年   2260篇
  2003年   2233篇
  2002年   2102篇
  2001年   1696篇
  2000年   1548篇
  1999年   1247篇
  1998年   1260篇
  1997年   1192篇
  1996年   1015篇
  1995年   984篇
  1994年   866篇
  1993年   752篇
  1992年   757篇
  1991年   732篇
  1990年   773篇
  1989年   637篇
  1988年   632篇
  1987年   675篇
  1986年   624篇
  1985年   774篇
  1984年   836篇
  1983年   745篇
  1982年   711篇
  1981年   652篇
  1980年   619篇
  1979年   614篇
  1978年   583篇
  1977年   486篇
  1976年   465篇
  1975年   471篇
  1974年   421篇
  1973年   473篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
941.
942.
Abstract. Survival and behaviour of the hermatypic coral Diploria strigosa was studied during 6–24 h doses with water-accomodated fractions of chemically dispersed crude oil, and for a subsequent recovery period of 1 month. Experiments utilized a flow-through laboratory dosing procedure and incorporated petroleum hydrocarbon measurements in order to simulate a major but short-term oil spill in shallow subtidal benthic reef environments. Chemically dispersed oil treatments consisted of Arabian Light Crude oil with Corexit 9527 or BP1100WD at 1–20 ppm concentrations of oil.
In general, effects observed were sub-lethal, temporary, and associated with the highest concentrations tested. Responses to the presence of dispersed oil at 20ppm for 24 h included mesenterial filament extrusion, extreme tissue contraction, tentacle retraction and localized tissue rupture. The nature and severity of reactions during the dosing phase varied between colonies and treatments, but colonies typically resumed normal behaviour within 2 h to 4 d of the recovery period. It therefore seems unlikely that observed biological effects would impair long-term viability.  相似文献   
943.
In 2001 and 2002, Australia acquired an integrated geophysical data set over the deep-water continental margin of East Antarctica from west of Enderby Land to offshore from Prydz Bay. The data include approximately 7700 km of high-quality, deep-seismic data with coincident gravity, magnetic and bathymetry data, and 37 non-reversed refraction stations using expendable sonobuoys. Integration of these data with similar quality data recorded by Japan in 1999 allows a new regional interpretation of this sector of the Antarctic margin. This part of the Antarctic continental margin formed during the breakup of the eastern margin of India and East Antarctica, which culminated with the onset of seafloor spreading in the Valanginian. The geology of the Antarctic margin and the adjacent oceanic crust can be divided into distinct east and west sectors by an interpreted crustal boundary at approximately 58° E. Across this boundary, the continent–ocean boundary (COB), defined as the inboard edge of unequivocal oceanic crust, steps outboard from west to east by about 100 km. Structure in the sector west of 58° E is largely controlled by the mixed rift-transform setting. The edge of the onshore Archaean–Proterozoic Napier Complex is downfaulted oceanwards near the shelf edge by at least 6 km and these rocks are interpreted to underlie a rift basin beneath the continental slope. The thickness of rift and pre-rift rocks cannot be accurately determined with the available data, but they appear to be relatively thin. The margin is overlain by a blanket of post-rift sedimentary rocks that are up to 6 km thick beneath the lower continental slope. The COB in this sector is interpreted from the seismic reflection data and potential field modelling to coincide with the base of a basement depression at 8.0–8.5 s two-way time, approximately 170 km oceanwards of the shelf-edge bounding fault system. Oceanic crust in this sector is highly variable in character, from rugged with a relief of more than 1 km over distances of 10–20 km, to rugose with low-amplitude relief set on a long-wavelength undulating basement. The crustal velocity profile appears unusual, with velocities of 7.6–7.95 km s−1 being recorded at several stations at a depth that gives a thickness of crust of only 4 km. If these velocities are from mantle, then the thin crust may be due to the presence of fracture zones. Alternatively, the velocities may be coming from a lower crust that has been heavily altered by the intrusion of mantle rocks. The sector east of 58° E has formed in a normal rifted margin setting, with complexities in the east from the underlying structure of the N–S trending Palaeozoic Lambert Graben. The Napier Complex is downfaulted to depths of 8–10 km beneath the upper continental slope, and the margin rift basin is more than 300 km wide. As in the western sector, the rift-stage rocks are probably relatively thin. This part of the margin is blanketed by post-rift sediments that are up to about 8 km thick. The interpreted COB in the eastern sector is the most prominent boundary in deep water, and typically coincides with a prominent oceanwards step-up in the basement level of up to 1 km. As in the west, the interpretation of this boundary is supported by potential field modelling. The oceanic crust adjacent to the COB in this sector has a highly distinctive character, commonly with (1) a smooth upper surface underlain by short, seaward-dipping flows; (2) a transparent upper crustal layer; (3) a lower crust dominated by dipping high-amplitude reflections that probably reflect intruded or altered shears; (4) a strong reflection Moho, confirmed by seismic refraction modelling; and (5) prominent landward-dipping upper mantle reflections on several adjacent lines. A similar style of oceanic crust is also found in contemporaneous ocean basins that developed between Greater India and Australia–Antarctica west of Bruce Rise on the Antarctic margin, and along the Cuvier margin of northwest Australia.  相似文献   
944.
945.
946.
This study examined the phenology and ecological consequences of a benthic filamentous cyanobacterial bloom (Lyngbya majuscula) in Deception Bay (Moreton Bay, Queensland, Australia). Bloom initiation occurred in mid December 1999 and expanded to encompass an 8 km2 area by April 2000. Small fish and penaeid prawns (<25 cm total length) were quantitatively sampled through periods designated as before, during and after the bloom using a combination of pop-netting within mangroves and beam trawling over adjacent seagrass beds. Data on larger-bodied fish were compiled from daily fishing logs provided by local commercial fishers. Changes in dry mass of bloom material caught in nets and changes in water chemistry were also measured. Mean concentrations of ammonia-N in residual water within mangroves were several orders of magnitude higher in the affected area than in the control and dissolved oxygen was markedly lower in affected areas. Across the study area, mean density, live mass and number of species declined during the bloom, with fish assemblages using mangroves showing greater decline than assemblages using seagrasses. Response at the species level was highly variable; generally, epibenthic species showed a more sustained decline than demersals. Mean monthly fish catch was significantly lower in bloom than non-bloom years. This study has also demonstrated that throughout the bloom, the affected area continued to support a highly diverse and abundant fish and prawn assemblage, and probably maintained its function as an important nursery habitat for many species.  相似文献   
947.
Positive gravity anomalies indicate two dense conduits or eruptive centers beneath the northern summit of Sio Guyot, western Mid-Pacific Mountains. The low amplitude of the positive anomalies and the gravity lows flanking the guyot can be explained by crust 2.5 times the normal Pacific Ocean crustal thickness extending to a depth of 22 ± 2 km. The excess mass of the seamount is 100% locally isostatically compensated by the mass deficit below; this compensation may result from flexural loading and voluminous sill injection near a former ridge-crest transform fault system trending roughly ENE and NNW.  相似文献   
948.
Oil spills can have significant, short-term, negative impacts on coastal marshes, but the long-term effects and eventual recovery are not well documented, particularly in brackish marshes. The goals of this investigation were to: (1) document the long-term recovery of a Louisiana brackish marsh plant community impacted by a 1985 oil spill; (2) separate the effect of the oil spill on marsh deterioration from ambient rates of marsh deterioration; and (3) assess the relative importance of residual oil in the sediment and decreased marsh surface elevation in the failure of certain areas to recover. A total of 68 permanent plots previously established in 1985 were re-surveyed for plant and soil recovery in the fall of 1989. Although substantial (and near total) vegetative recovery was evident by significant increases in live and total vegetative cover, many of the plots that were initially heavily impacted by oil still displayed elevated levels of total saturated hydrocarbons in the soil. August 1990 measurements of plant photosynthetic response and edaphic variables revealed no significant differences between control plots and plots heavily impacted by oil that displayed vegetative regrowth. Rates of wetland land loss in the oiled marsh during an 8-year period that bracketed the time of the spill were within the historical range measured for this site and similar to the land loss rates of adjacent reference marshes. Results from a manipulative field transplant experiment indicated that the long-term failure of certain small areas to revegetate was primarily due to a decrease of marsh surface elevation (increased flooding stress), not a residual oil effect.  相似文献   
949.
950.
Observations of fluid mud were made in the lower North Passage of the Yangtze Estuary in February 2000, on 10 -11 August 2000, on 30 - 31 August 2000 (after two strong typhoons), on 21 - 24 August 2000 (neap tide) and on 3 -6 September 2000 (mean tide) respectively. In situ data show that the fluid mud in this area consists of fine cohesive sediment (median size 7.23 μm). The formation and movement of fluid mud varied during the neap-spring and flood-ebb tidal cycle. Observations suggest that fluid mud phenomena in this area may be categorised in a three-fold manner as slack water, storm and saltwedge features. The thickness of the fluid mud layer of slack water during the neap tide ranged from 0.2 to 0.96 m, whereas during the mean tide, the thickness ranged from 0.17 to 0.73 m, and the thickness of the fluid mud layer was larger during slack water than at the flood peak. Shoals cover an area of 800 km^2 with a water depth smaller than 5 m. Erosion of these extensive intertidal mudflats due to storm action provides an abundant sediment source. This is particularly significant in this estuary when the tidal level is lower than 5 m. The lower North Passage is a typical zone of saltwater wedging, so the saltwedge fluid mud has the most extensive spatial range in the estuary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号