首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
地球物理   3篇
地质学   20篇
海洋学   2篇
自然地理   11篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2001年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1984年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
排序方式: 共有36条查询结果,搜索用时 31 毫秒
11.
The Tochiyama landslide is one of several complex, deep-seated and large-scale landslides occurring in the Hokuriku Province in central Japan. The landslide is about 2 km long and about 500–1100 m wide; it occupies an area of approximately 150 ha and has a maximum depth of 60 m. The slide developed on a dip-slope structure, and is divisible into three layers in ascending order: older landslide debris and avalanche deposits, younger debris-avalanche deposits, and talus. The landslide complex is still active. A triangulation point on the upper part of the landslide shifted downhill by 3.3 m from 1907 to 1983, indicating an average rate of 4.3 cm/y. In 1991, the average rate of movement on the sliding surface was also 4.3 cm/y as measured by an automatic system with inclinometers installed in borehole No. 1–2. The rate measured for borehole No. 1–3, located 380 m upslope from No. 1–2, was over twice that of No. 1–2 for the same period; it has since accelerated to about 19 cm/y. Thus current movements on the basal sliding surface are inhomogeneous; the head of the slide complex is increasing the horizontal granular pressures on the lower part of the slide block.

On the basis of dating of two tephra layers and14C dating of carbonized wood intercalated within the landslide body, two stages of slide movement have been distinguished. The earlier occurred between about 46,000 to 25,000 years ago, and the latter occurred since 1361 A.D. The following sequence of events is inferred. During the middle Pleistocene, intense tectonic movements occurred in the Hokuriku Province, and as a consequence dip-slopes were developed in the Tochiyama landslide area. Low-angle fault planes (possibly representing slump features) and fracture zones then developed within flysch deposits underlying the landslide area, causing a reduction in shear strength. The erosion base level was lowered during the Würm glacial age, and due to severe erosion and incision of stream valleys, the surface slope angle rapidly increased, and toe resistance decreased. This combination of causes led to the development of a deep-seated primary landslide. As a result of an accumulation of younger deposits, regional uplift and further local erosion, stability of parts of the region decreased and led to landslide activity of a second stage. Reactivated and locally accelerating creep movements occur today and may forewarn of a stage of reactivated, hazardous rapid sliding, such as occurred with the adjacent and analogous Maseguchi landslide in 1947.  相似文献   

12.
The Duncansby volcanic neck, intruding the Middle Devonian red beds of north Caithness, Scotland, has revealed two significantly different axes of magnetization, yielding pole positions at 149°E, 24°N and 126.5°E, 60°N, respectively. The first pole, which is interpreted as corresponding to the oldest magnetization, is in perfect agreement with Devonian polar estimates from west of the Great Glen Fault. It is tentatively suggested therefore that the Duncansby neck correlates with the Late Devonian volcanism in the nearby Orkney Islands though palaeomagnetism allows an upper age estimate of around Middle Carboniferous. The data support an earlier proposition of there being a palaeomagnetic discordance across the Great Glen Fault that can be interpreted in terms of a large-scale late- or post-Devonian transcurrent movement along this fracture zone. The original (? Late Devonian) magnetization has been nearly completely erased by the second phase of magnetization which, according to its pole position, most likely dates from about the Middle Jurassic. The latter magnetization is thought to be a consequence of burial, the coastal districts of Caithness having participated in the general subsidence of the North Sea area in late Palaeozoic and Mesozoic times. The burial magnetization, involving VPTRM and or TCRM processes, is considered to have been “frozen-in” as a result of uplift in connection with the well-documented mid-Jurassic tectonic phase that affected the northern North Sea basin, including the adjacent Moray Firth area. K/Ar analyses of the Duncansby intrusion give apparent ages ranging from 258 to 239 Ma. These dates, which lie between the two geological events inferred from palaeomagnetism, are not seen as true rock ages but rather as the result of a partial Ar loss during burial reheating.  相似文献   
13.
Acta Geotechnica - Water retention characteristics are important for modeling the mechanical and hydraulic behavior of partially saturated sand. It is well known that the soil water characteristic...  相似文献   
14.
A comprehensive study was performed to characterize, for the first time, the mud, water, and gases released from onshore mud volcanoes located in the southern margin of the Junggar Basin, northwestern China. Chemical compositions of mud, along with the geology of the basin, suggest that a source of the mud is Mesozoic or Cenozoic shale. Oxygen and H isotope compositions of the released water suggest a local meteoric origin. Combined with the positive Eu anomalies of the water, a large 18O shift of the water suggests extensive interaction with rocks. Gases discharged from the mud volcanoes are predominantly thermogenic hydrocarbons, and the high δ13C values (>+20‰ VPDB) for CO2 gases and dissolved carbonate in muddy water suggest secondary methanogenesis with CO2 reduction after oil biodegradation.The enrichments of Eu and 18O in water and the low thermal gradient of the area suggest that the water-rock interactions possibly occur deeper than 3670 ± 200 m. On the other hand, considering the relationship to the petroleum reservoir around the mud volcanoes, the depth of the gases can be derived from about 3600 m, a depth that is greater than that generally estimated for reservoirs whose gas is characterized by 13C-enriched CO2. Oil biodegradation with CO2 reduction likely occurs at a shallower depth along the seepage system of the mud volcano. The results contribute to the worldwide data set of gas genesis in mud volcanoes. Moreover, they further support the concept that most terrestrial mud volcanoes release thermogenic gas produced in very deep sediments and may be early indicators of oil biodegradation, an important problem in the petroleum industry.  相似文献   
15.
A feedforward neural network with one hidden layer and five neurons was trained to recognize the distance to kuroko mineral deposits. Average amounts per hole of pyrite, sericite, and gypsum plus anhydrite as measured by X-rays in 69 drillholes were used to train the net. Drillholes near and between the Fukazawa, Furutobe, and Shakanai mines were used. The training data were selected carefully to represent well-explored areas where some confidence of the distance to ore was assured. A logarithmic transform was applied to remove the skewness of distance and each variable was scaled and centered by subtracting the median and dividing by the interquartile range. The learning algorithm of annealing plus conjugate gradients was used to minimize the mean squared error of the scaled distance to ore. The trained network then was applied to all of the 152 drillholes that had measured gypsum, sericite, and pyrite. A contour plot of the neural net predicted distance to ore shows fairly wide areas of 1 km or less to ore; each of the known deposit groups is within the 1 km contour. The high and low distances on the margins of the contoured distance plot are in part the result of boundary effects of the contouring algorithm. For example, the short distances to ore predicted west of the Shakanai (Hanaoka) deposits are in basement. However, the short distances to ore predicted northeast of Furotobe, just off the figure, coincide with the location of the Nurukawa kuroko deposit and the Omaki deposit, south of the Shakanai-Hanaoka deposits, seems to be on an extension of short distance to ore contour, but is beyond the 3 km limit from drillholes. Also of interest are some areas only a few kilometers from the Fukazawa and Shakanai groups of deposits that are estimated to be many kilometers from ore, apparently reflecting the network's recognition of the extreme local variability of the geology near some deposits.  相似文献   
16.
Thirty-one selected volcanic rocks from the Myoko volcano group which comprises a volcanic chain of four independent volcanoes of Quaternary to Recent age are analyzed for 87Sr/86Sr ratios. The rocks of the lizuna volcano, the oldest among the Myoko volcano group, have higher 87Sr/86Sr ratios and show a larger scatter ranging from 0.70437 to 0.70556 than those of other volcanoes. The Kurohime volcanic rocks have a restricted range of 87Sr/86Sr ratios (0.70403∼0.70435). 87Sr/86Sr ratios of the Myoko volcanic rocks are almost the same in average to those of the Kurohime volcanic rocks, although somewhat varied ranging from 0.70378 to 0.70461. A single analysis of the Yakeyama volcanic rock yielded a 87Sr/86Sr ratio of 0.70427. A characteristic pattern in 87Sr/86Sr ratios is observed through the volcanic activity of the Myoko volcano group; 87Sr/86Sr ratios are high in the early stage of the volcanic activity and then decrease to low values, the late eruptives being characterized by constant 87Sr/86Sr ratios. The negative correlation between 87Sr/86Sr and Rb/Sr, and positive correlation between 87Sr/86Sr and Sr found in the rocks of the Iizuna volcano are interpreted to show the occurrence of contamination by materials with high 87Sr/86Sr ratios (>0.7056), low Rb/Sr ratios (<0.01) and high Sr contents (>300 ppm). Sialic crustal contamination may have played only a minor role.  相似文献   
17.
The insoluble polymer from the Murchison C2 chondrite was studied by a variety of degradation techniques: pyrolysis, depolymerization by Na4P2O7 or CF3COOH, and oxidation by HNO3, Na2Cr2O7, or O2/UV light. Products were identified by IR spectroscopy, gas chromatography, and mass spectrometry (time-of-flight and high-resolution). In some cases, parallel measurements were made on a synthetic polymer produced by the Fischer-Tropsch reaction, a meteoritic polymer from the Allende C3V chondrite, and samples of coal or related materials.Our studies confirm the prevailing view that the meteoritic polymer has a bridged aromatic structure with functional groups such as COOH, OH, and CO, but provides much new detail. Oxidation with HNO3 shows that the meteoritic and synthetic polymers have a similar degree of condensation, greater than that of high-volatile bituminous coal. Gentler oxidation with Cr2O2?7 or O2/UV led to the identification of 15 aromatic ring systems as the corresponding carboxylic acids: benzene, biphenyl, naphthalene and phenanthrene and their methyl derivatives, fluoranthene (or pyrene), chrysene, fluorenone, benzophenone, anthraquinone; and the heterocyclics dibenzofuran, benzothiophene, dibenzothiophene, pyridine, quinoline (or isoquinoline), and carbazole. Of 11 aliphatic acids identified, three dicarboxylic acids presumably came from hydroaromatic portions of the polymer, whereas eight monocarboxylic acids probably are derived from bridging groups or ring substituents.Depolymerization with CF3COOH yielded some of the same ring systems, as well as alkanes (C1–C8) and alkenes (C2–C8), alkyl (C1–C5) benzenes and naphthalenes, and methyl- or dimethyl-indene, -indane, -phenol, -pyrrole, and -pyridine. All these compounds were detected below 200°C, and hence probably were indigenous constituents rather than pyrolysis products.Though the match between the synthetic and meteoritic polymer is only fair, several properties of the latter suggest that it, too, was produced by surface catalysis: the predominance of n-alkyl fragments, its occurrence as a surface coating on specific kinds of mineral grains, and the C13C12 fractionation between polymer and coexisting carbonates.  相似文献   
18.
Ten whole-rock samples from the Tudor Gabbro, Grenville Province, Ontario, Canada have been dated by the KAr method. The ages calculated by the conventional method range from 900 m.y. to 2040 m.y. On an isochron plot, three samples from a sampling site near the northern border of the gabbro lie along a 670-m.y. isochron with an initial40Ar/36Ar ratio of about 17,300 whereas all other samples lie along another 670-m.y. isochron with an initial ratio of about 5000. Although it is not certain yet as to what geological event the isochron age represents, the results clearly demonstrate that the effect of initial argon can be significant even on old samples such as these.  相似文献   
19.
Two samples of the Murchison C2 chondrite were examined for organic nitrogen compounds, using mass spectrometry as well as paper and thin-layer chromatography. Under mild extraction conditions (water or formic acid) only aliphatic amines and C2-C6 alkylpyridines were seen; the latter may be contaminants. Under drastic extraction conditions (hot, 3–6 M HCl or CF3COOH), a variety of basic nitrogen compounds appeared, in the following amounts (ppm): adenine (15), guanine (5), melamine (20), cyanuric acid (20–30), guanylurea (30–45), urea (25), etc. Apparently these compounds are present mainly in macromolecular material, and are released only upon acid hydrolysis.These findings support our earlier identifications of these compounds in the Orgueil meteorite. They also suggest that the recent failure by Folsomeet al. (Nature232, 108–109, 1971; Geochim. Cosmochim. Acta37, 455–465, 1973) to find purines or triazines in carbonaceous chondrites was due to inadequate extraction conditions: water and formic acid, rather than HCl. Conversely, we were unable to detect the principal compound class reported by Folsome et al.: 4-hydroxypyrimidines.  相似文献   
20.
Abstract. Kuroko deposits are a representative volcanic‐hosted massive sulfide deposit and the Hokuroku district is economically the most important Kuroko containing province in Japan. There are two cycles of the bimodal volcanic sequence in the Hokuroku district. The pre‐ore volcanism started with basaltic activity and was followed by intensive felsic hyaloclas‐tic activity under bathyal conditions. The post‐ore sequence also began with basaltic activity intercalated with mudstone and was followed by alternating beds of pumice tuff with several lava flows and mudstone. Kuroko deposits are situated in the final period of the pre‐ore felsic volcanic sequence of the first bimodal volcanic cycle. Based on a detailed investigation of existing age data, it was concluded that the felsic volcanic sequences in the pre‐and post‐Kuroko formation can be divided into a pre‐ore dacite group (16–13.5 Ma), a D2 dacite group (lower unit of the post‐ore volcanic sequence, 12.7±0.6~ ll Ma) and a Dl dacite group (upper unit of the post‐ore sequence including quartz‐porphyry and granitoid, 11sim;10 Ma) in ascending order. Field and microscopic observations show that the pre‐ore dacite is characterized by aphyric to plagioclase‐phyric lava and the post‐ore dacitic rocks are characterized by quartz‐plagioclase‐phyric aphanitic lava and dome. These three dacite groups are petrochemically discriminated by SiO2‐Al2O3 and CaO‐TiO2 diagrams, excluding altered specimens. The distribution of the normative compositions on the Q‐An‐Ab‐Or diagram suggests that the pre‐ore dacites trend on the 5 kb cotectic line (equilibrated to 10—15 km deep) and those of the post‐ore trend along the 1 kb line (a few km deep). The secular variation of the major elements indicates that the rhyolitic members genetically related to the Kuroko formation could be the most differentiated products in the pre‐ore felsic volcanism. The distribution of Nb against SiO2 content in the pre‐ and post‐ore bimodal volcanic cycles indicates that these two volcanisms could have been generated by different magmatic origins. The difference would have been caused by the tectonic conversion from a back‐arc to an island‐arc setting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号