首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   827篇
  免费   31篇
  国内免费   4篇
测绘学   5篇
大气科学   80篇
地球物理   157篇
地质学   265篇
海洋学   54篇
天文学   239篇
综合类   3篇
自然地理   59篇
  2024年   4篇
  2021年   5篇
  2020年   7篇
  2019年   11篇
  2018年   26篇
  2017年   16篇
  2016年   12篇
  2015年   28篇
  2014年   22篇
  2013年   48篇
  2012年   22篇
  2011年   43篇
  2010年   41篇
  2009年   53篇
  2008年   26篇
  2007年   33篇
  2006年   30篇
  2005年   31篇
  2004年   26篇
  2003年   28篇
  2002年   32篇
  2001年   20篇
  2000年   32篇
  1999年   9篇
  1998年   14篇
  1997年   18篇
  1996年   15篇
  1995年   19篇
  1994年   9篇
  1993年   8篇
  1992年   12篇
  1991年   8篇
  1990年   10篇
  1989年   10篇
  1987年   7篇
  1986年   6篇
  1985年   10篇
  1984年   13篇
  1983年   13篇
  1982年   6篇
  1981年   10篇
  1980年   6篇
  1979年   5篇
  1978年   8篇
  1977年   11篇
  1976年   5篇
  1975年   4篇
  1974年   6篇
  1973年   3篇
  1971年   3篇
排序方式: 共有862条查询结果,搜索用时 15 毫秒
51.
We present measurements of several near-infrared emission lines from the nearby galaxy NGC 253. We have been able to measure four H2 lines across the circumnuclear starburst, from which we estimate the ortho- to para- ratio of excited H2 to be ∼2. This indicates that the bulk of the H2 emission arises from photodissociation regions (PDRs), rather than from shocks. This is the case across the entire region of active star formation.
As the H2 emission arises from PDRs, it is likely that the ratio of H2 to Brγ (the bright hydrogen recombination line) is a measure of the relative geometry of O and B stars and PDRs. Towards the nucleus of NGC 253 the geometry is deduced to be tightly clustered O and B stars in a few giant H  II regions that are encompassed by PDRs. Away from the nuclear region, the geometry becomes that of PDRs bathed in a relatively diffuse ultraviolet radiation field.
The rotation curves of 1–0 S(1) and Brγ suggest that the ionized gas is tracing a kinetic system different from that of the molecular gas in NGC 253, particularly away from the nucleus.  相似文献   
52.
The quasilinear theory of acceleration of relativistic particles by hydromagnetic turbulence is treated in the adiabatic limit of small gyration radius. The theory is based on the relativistic Vlasov equation; however, a given pitch-angle scattering rate by microturbulence is postulated and is added to this equation. The resulting acceleration is found to be given by a diffusion coefficient in total momentum, which is proportional to the spectrum of turbulence with a rate coefficient . is a frequency that represents the efficiency of each wave component of the turbulence in producing acceleration. It is given as an integral over the solution of a differential equation in pitch angle. is evaluated in various limiting cases and is shown to lead to familiar forms of acceleration, such as Fermi acceleration and magnetic pumping. Thus, a comprehensive theory of these forms of heating is achieved.  相似文献   
53.
54.
55.
This paper investigates the stable isotopic composition from late Pleistocene–Holocene (~ 13 to ~ 10.5 cal ka BP) shells of the land snail Helix figulina, from Franchthi Cave (Greece). It explores the palaeoclimatic and palaeoenvironmental implications of the isotope palaeoecology of archaeological shells at the time of human occupation of the cave. Modern shells from around the cave were also analysed and their isotopic signatures compared with those of the archaeological shells. The carbon isotope composition of modern shells depicts the consumption of C3 vegetation. Shell oxygen isotopic values are consistent with other Mediterranean snail shells from coastal areas. Combining empirical linear regression and an evaporative model, the δ18Os suggest that modern snails in the study area are active during periods of higher relative humidity and lower rainfall δ18O, probably at night. Late glacial and early Holocene δ18Os show lower values compared to modern ones. Early Holocene δ18Os values likely track enhanced moisture and isotopic changes in the precipitation source. By contrast, lower late glacial δ18O could reflect lower temperatures and δ18Op, compared to the present day. Shell carbon isotope values indicate the presence of C3 vegetation as main source of carbon to late glacial and early Holocene snails.  相似文献   
56.
A moving-grid finite-element model has been developed to model numerically the vertically integrated properties of the atmospheric boundary layer (ABL) in one dimension. The model equations for mean wind velocity and potential temperature are combined with a surface energy budget and predictive equations for boundary-layer height to simulate both stable and unstable ABLs. The nodal position defining the top of the boundary layer is one of the model unknowns and is determined by boundary-layer dynamics. The finite-element method, being an integral method, has advantages of accurate representation of both bulk values and their vertical derivatives, the latter being essential properties of the nocturnal boundary layer. Compared with observations and results of other models, the present model predicts bulk properties very well while retaining a simple and economical form.Journal Paper No. J-12996 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, Project No. 2779.  相似文献   
57.
During the latitudinal alignment in 2004, ACE and Ulysses encountered two stream interaction regions (SIRs) each Carrington rotation from 2016 to 2018, at 1 and 5.4 AU, respectively. More SIR-driven shocks were observed at 5.4 AU than at 1 AU. Three small SIRs at 1 AU merged to form a strong SIR at 5.4 AU. We compare the Enlil model results with spacecraft observations from four aspects: i) the accuracy of the latest versions of models (WSA v2.2 and Enlil v2.7) vs. old versions (WSA v1.6 and Enlil v2.6), ii) the sensitivity to different solar magnetograms (MWO vs. NSO), iii) the sensitivity to different coronal models (WSA vs. MAS), iv) the predictive capability at 1 AU vs. 5.4 AU. We find the models can capture field sector boundaries with some time offset. Although the new versions have improved the SIR timing prediction, the time offset can be up to two days at 1 AU and four days at 5.4 AU. The models cannot capture some small-scale structures, including shocks and small SIRs at 1 AU. For SIRs, the temperature and total pressure are often underestimated, while the density compression is overestimated. For slow wind, the density is usually overestimated, while the temperature, magnetic field, and total pressure are often underestimated. The new versions have improved the prediction of the speed and density, but they need more robust scaling factors for magnetic field. The Enlil model results are very sensitive to different solar magnetograms and coronal models. It is hard to determine which magnetogram-coronal model combination is superior to others. Higher-resolution solar and coronal observations, a mission closer to the Sun, together with simulations of greater resolution and added physics, are ways to make progress for the solar wind modeling.  相似文献   
58.
Dust devils – convective vortices made visible by the dust and debris they entrain – are common in arid environments and have been observed on Earth and Mars. Martian dust devils have been identified both in images taken at the surface and in remote sensing observations from orbiting spacecraft. Observations from landing craft and orbiting instruments have allowed the dust devil translational forward motion (ground velocity) to be calculated, but it is unclear how these velocities relate to the local ambient wind conditions, for (i) only model wind speeds are generally available for Mars, and (ii) on Earth only anecdotal evidence exists that compares dust devil ground velocity with ambient wind velocity. If dust devil ground velocity can be reliably correlated to the ambient wind regime, observations of dust devils could provide a proxy for wind speed and direction measurements on Mars. Hence, dust devil ground velocities could be used to probe the circulation of the martian boundary layer and help constrain climate models or assess the safety of future landing sites.We present results from a field study of terrestrial dust devils performed in the southwest USA in which we measured dust devil horizontal velocity as a function of ambient wind velocity. We acquired stereo images of more than a 100 active dust devils and recorded multiple size and position measurements for each dust devil. We used these data to calculate dust devil translational velocity. The dust devils were within a study area bounded by 10 m high meteorology towers such that dust devil speed and direction could be correlated with the local ambient wind speed and direction measurements.Daily (10:00–16:00 local time) and 2-h averaged dust devil ground speeds correlate well with ambient wind speeds averaged over the same period. Unsurprisingly, individual measurements of dust devil ground speed match instantaneous measurements of ambient wind speed more poorly; a 20-min smoothing window applied to the ambient wind speed data improves the correlation. In general, dust devils travel 10–20% faster than ambient wind speed measured at 10 m height, suggesting that their ground speeds are representative of the boundary layer winds a few tens of meters above ground level. Dust devil ground motion direction closely matches the measured ambient wind direction.The link between ambient winds and dust devil ground velocity demonstrated here suggests that a similar one should apply on Mars. Determining the details of the martian relationship between dust devil ground velocity and ambient wind velocity might require new in situ or modelling studies but, if completed successfully, would provide a quantitative means of measuring wind velocities on Mars that would otherwise be impossible to obtain.  相似文献   
59.
We compare measurements from the Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) experiment to the NOAA-17 solar backscatter ultraviolet (SBUV/2) instrument during the 2007 Northern Hemisphere polar mesospheric cloud (PMC) season. Daily average Rayleigh scattering albedos determined from identical footprints from the CIPS nadir camera and SBUV/2 agree to better than ~5% throughout the season. Average PMC brightness values derived from the two instruments agree to within ±10%. PMC occurrence frequencies are on average ~5% to nearly a factor of two higher in CIPS, depending on latitude. Agreement is best at high latitudes where clouds are brighter and more frequent. The comparisons indicate that AIM CIPS data are valid for scientific analyses. They also show that CIPS measurements can be linked to the long time series of SBUV/2 data to investigate long-term variability in PMCs.  相似文献   
60.
A large multi-institutional nearshore field experiment was conducted at Truc Vert, on the Atlantic coast of France in early 2008. Truc Vert’08 was designed to measure beach change on a long, sandy stretch of coast without engineering works with emphasis on large winter waves (offshore significant wave height up to 8 m), a three-dimensional morphology, and macro-tidal conditions. Nearshore wave transformation, circulation and bathymetric changes involve coupled processes at many spatial and temporal scales thus implying the need to improve our knowledge for the full spectrum of scales to achieve a comprehensive view of the natural system. This experiment is unique when compared with existing experiments because of the simultaneous investigation of processes at different scales, both spatially (from ripples to sand banks) and temporally (from single swash events to several spring-neap tidal cycles, including a major storm event). The purpose of this paper is to provide background information on the experiment by providing detailed presentation of the instrument layout and snapshots of preliminary results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号