首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
大气科学   10篇
地质学   1篇
海洋学   2篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2011年   1篇
  2009年   3篇
  2007年   1篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1995年   1篇
排序方式: 共有13条查询结果,搜索用时 0 毫秒
11.
The Mascarene Plateau lies in the south-west Indian Ocean between the islands of Mauritius and the Seychelles Bank, and is characterised by a series of shallow banks separated by deep (>1 000 m), narrow channels. The plateau acts as an obstruction to the general ocean circulation in this region, separating the westward-flowing South Equatorial Current (SEC) into two branches downstream of the plateau. In this article, we present the results of a survey conducted along the entire Mascarene Plateau during the Northeast Monsoon, in October–November 2008. In addition, data from Argo floats were used to determine the origin of water masses entering this region. The plateau contains three gaps through which branches of the SEC are channelled. The northern, central and southern gaps receive 14.93 Sv, 14.41 Sv and 6.19 Sv, respectively. Although there are differences in water-mass properties to the west and east of the Mascarene Plateau due to mixing, the SEC acts as a sharp boundary between water masses of southern and northern Indian Ocean origin. Mixing occurs in the central gap between intermediate water masses (Red Sea Water [RSW] and Antarctic Intermediate Water [AAIW]) as well as in the upper waters (Subtropical Surface Water [STSW] and Indonesian Throughflow Water [ITW]). Through the northern gap, mixing occurs between Arabian Sea High-Salinity Water (ASHSW), ITW and Tropical Surface Water (TSW), while through the southern gap, mixing occurs between STSW and ITW. North Indian Deep Water (NIDW) is present in the region but the plateau appears to have no effect on it.  相似文献   
12.
The structure of the upper ocean and surface atmospheric conditions are described during a ship cruise across the central Indian Ocean from December 1995 to January 1996. In situ data on currents, temperature, salinity and surface heat fluxes are described and compared with expected climatological values. Thermocline uplift in the 6-7°S latitude band is linked to the cyclonic shear of near-surface currents. A comparison of quiescent and windy periods demonstrates that evaporative fluxes become amplified near cyclonic vortices fed by southerly meridional winds. The ocean density structure is influenced by salinity gradients, driven by the precipitation-evaporation balance. Near the inter-tropical convergence zone (ITCZ), freshwater fluxes create a stable surface layer and helps to maintain the eastward equatorial counter-current. An analysis of the atmospheric boundary layer from NCEP re-analysis data seeks to place the in situ results into the context of weather conditions at the time of the cruise. Further studies of this kind will improve our understanding of relationships between the Indian Ocean monsoon and surrounding climates.  相似文献   
13.
After removing the annual cycle, a principal component analysis is applied to the daily outgoing longwave radiation anomaly field, used here as a proxy for atmospheric convection. The analysis is carried out over the southern African region (7.5°E–70°E, 10°S–40°S) for austral summer (November through February) for the period 1979–1980 to 2006–2007. The first five principal components (PC) are retained. The first two PCs describe spatial patterns oriented north-west to south-east from tropical southern Africa (SA) to the mid-latitudes. They are interpreted to be different possible locations for synoptic-scale tropical–temperate troughs (TTT), one dominant rainfall-producing synoptic system in the region. The phase relationship between these two PCs describes a tendency for these TTT to propagate eastwards from SA to the Mozambique Channel and southern Madagascar. The next three PCs describe convective fluctuations, respectively, located over the north-west, the south and the centre of SA. Their time series are significantly associated with Madden–Julian oscillation (MJO) activity in the tropics. However, we find that TTT systems are statistically independent of the MJO, i.e. they are equally liable to occur during any phase of the MJO. Three PCs out of five also show a significant association with El Niño southern oscillation, confirming that El Niño years mostly coincide with suppressed convection at the intraseasonal time-scales, a result consistent with its impact on seasonal averages diagnosed in previous studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号