首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38114篇
  免费   1001篇
  国内免费   1054篇
测绘学   962篇
大气科学   2924篇
地球物理   7852篇
地质学   14101篇
海洋学   3410篇
天文学   8230篇
综合类   240篇
自然地理   2450篇
  2022年   293篇
  2021年   486篇
  2020年   466篇
  2019年   506篇
  2018年   930篇
  2017年   896篇
  2016年   1076篇
  2015年   756篇
  2014年   1071篇
  2013年   1907篇
  2012年   1381篇
  2011年   1843篇
  2010年   1599篇
  2009年   2073篇
  2008年   1732篇
  2007年   1809篇
  2006年   1732篇
  2005年   1257篇
  2004年   1154篇
  2003年   1057篇
  2002年   1025篇
  2001年   864篇
  2000年   834篇
  1999年   681篇
  1998年   724篇
  1997年   696篇
  1996年   579篇
  1995年   569篇
  1994年   488篇
  1993年   431篇
  1992年   424篇
  1991年   391篇
  1990年   461篇
  1989年   379篇
  1988年   360篇
  1987年   441篇
  1986年   351篇
  1985年   437篇
  1984年   537篇
  1983年   455篇
  1982年   456篇
  1981年   406篇
  1980年   422篇
  1979年   362篇
  1978年   349篇
  1977年   344篇
  1976年   312篇
  1975年   300篇
  1974年   318篇
  1973年   347篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
181.
This paper presents the applications of the differential evolution (DE) algorithm in back analysis of soil parameters for deep excavation problems. A computer code, named Python‐based DE, is developed and incorporated into the commercial finite element software ABAQUS, with a parallel computing technique to run an FE analysis for all trail vectors of one generation in DE in multiple cores of a cluster, which dramatically reduces the computational time. A synthetic case and a well‐instrumented real case, that is, the Taipei National Enterprise Center (TNEC) project, are used to demonstrate the capability of the proposed back‐analysis procedure. Results show that multiple soil parameters are well identified by back analysis using a DE optimization algorithm for highly nonlinear problems. For the synthetic excavation case, the back‐analyzed parameters are basically identical to the input parameters that are used to generate synthetic response of wall deflection. For the TNEC case with a total of nine parameters to be back analyzed, the relative errors of wall deflection for the last three stages are 2.2, 1.1, and 1.0%, respectively. Robustness of the back‐estimated parameters is further illustrated by a forward prediction. The wall deflection in the subsequent stages can be satisfactorily predicted using the back‐analyzed soil parameters at early stages. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
182.
We calculated tsunami runup probability (in excess of 0.5 m) at coastal sites throughout the Caribbean region. We applied a Poissonian probability model because of the variety of uncorrelated tsunami sources in the region. Coastlines were discretized into 20 km by 20 km cells, and the mean tsunami runup rate was determined for each cell. The remarkable ~500-year empirical record compiled by O’Loughlin and Lander (2003) was used to calculate an empirical tsunami probability map, the first of three constructed for this study. However, it is unclear whether the 500-year record is complete, so we conducted a seismic moment-balance exercise using a finite-element model of the Caribbean-North American plate boundaries and the earthquake catalog, and found that moment could be balanced if the seismic coupling coefficient is c = 0.32. Modeled moment release was therefore used to generate synthetic earthquake sequences to calculate 50 tsunami runup scenarios for 500-year periods. We made a second probability map from numerically-calculated runup rates in each cell. Differences between the first two probability maps based on empirical and numerical-modeled rates suggest that each captured different aspects of tsunami generation; the empirical model may be deficient in primary plate-boundary events, whereas numerical model rates lack backarc fault and landslide sources. We thus prepared a third probability map using Bayesian likelihood functions derived from the empirical and numerical rate models and their attendant uncertainty to weight a range of rates at each 20 km by 20 km coastal cell. Our best-estimate map gives a range of 30-year runup probability from 0–30% regionally.  相似文献   
183.
An effectiveness of the storm wave attenuation by protective piers in the Sevastopol Bay of the Black Sea is studied on the basis of numerical simulation using the SWAN spectral model. Analyzed are the parameters of waves generated by winds of four main directions as well as by the southern cyclone during the storm on November 11, 2007. It is obtained that waves from the northwest part of the Black Sea penetrate most intensively into the Sevastopol Bay in case of western wind and, to a lesser degree, in case of northern and southern winds. A protective effect of the piers is observed in the west part of the bay only and the wave attenuation near the southern coast is more significant than near the northern one. The area of the southern coast directly behind the southern pier is completely protected from the storm waves and, as moving away from the pier, the danger of intensive wave effect on the coast is kept.  相似文献   
184.
The central-western Mediterranean area is a key region for understanding the complex interaction between igneous activity and tectonics. In this review, the specific geochemical character of several ‘subduction-related’ Cenozoic igneous provinces are described with a view to identifying the processes responsible for the modifications of their sources. Different petrogenetic models are reviewed in the light of competing geological and geodynamic scenarios proposed in the literature.Plutonic rocks occur almost exclusively in the Eocene–Oligocene Periadriatic Province of the Alps while relatively minor plutonic bodies (mostly Miocene in age) crop out in N Morocco, S Spain and N Algeria. Igneous activity is otherwise confined to lava flows and dykes accompanied by relatively greater volumes of pyroclastic (often ignimbritic) products. Overall, the igneous activity spanned a wide temporal range, from middle Eocene (such as the Periadriatic Province) to the present (as in the Neapolitan of southern Italy). The magmatic products are mostly SiO2-oversaturated, showing calcalkaline to high-K calcalcaline affinity, except in some areas (as in peninsular Italy) where potassic to ultrapotassic compositions prevail. The ultrapotassic magmas (which include leucitites to leucite-phonolites) are dominantly SiO2-undersaturated, although rare, SiO2-saturated (i.e., leucite-free lamproites) appear over much of this region, examples being in the Betics (southeast Spain), the northwest Alps, northeast Corsica (France), Tuscany (northwest Italy), southeast Tyrrhenian Sea (Cornacya Seamount) and possibly in the Tell region (northeast Algeria).Excepted for the Alpine case, subduction-related igneous activity is strictly linked to the formation of the Mediterranean Sea. This Sea, at least in its central and western sectors, is made up of several young (< 30 Ma) V-shaped back-arc basins plus several dispersed continental fragments, originally in crustal continuity with the European plate (Sardinia, Corsica, Balearic Islands, Kabylies, Calabria, Peloritani Mountains). The bulk of igneous activity in the central-western Mediterranean is believed to have tapped mantle ‘wedge’ regions, metasomatized by pressure-related dehydration of the subducting slabs. The presence of subduction-related igneous rocks with a wide range of chemical composition has been related to the interplay of several factors among which the pre-metasomatic composition of the mantle wedges (i.e., fertile vs. refractory mineralogy), the composition of the subducting plate (i.e., the type and amount of sediment cover and the alteration state of the crust), the variable thermo-baric conditions of magma formation, coupled with variable molar concentrations of CO2 and H2O in the fluid phase released by the subducting plates are the most important.Compared to classic collisional settings (e.g., Himalayas), the central-western Mediterranean area shows a range of unusual geological and magmatological features. These include: a) the rapid formation of extensional basins in an overall compressional setting related to Africa-Europe convergence; b) centrifugal wave of both compressive and extensional tectonics starting from a ‘pivotal’ region around the Gulf of Lyon; c) the development of concomitant Cenozoic subduction zones with different subduction and tectonic transport directions; d) subduction ‘inversion’ events (e.g., currently along the Maghrebian coast and in northern Sicily, previously at the southern paleo-European margin); e) a repeated temporal pattern whereby subduction-related magmatic activity gives way to magmas of intraplate geochemical type; f) the late-stage appearance of magmas with collision-related ‘exotic’ (potassic to ultrapotassic) compositions, generally absent from simple subduction settings; g) the relative scarcity of typical calcalkaline magmas along the Italian peninsula; h) the absence of igneous activity where it might well be expected (e.g., above the hanging-wall of the Late Cretaceous–Eocene Adria–Europe subduction system in the Alps); i) voluminous production of subduction-related magmas coeval with extensional tectonic régimes (e.g., during Oligo-Miocene Sardinian Trough formation).To summarize, these salient central-western Mediterranean features, characterizing a late-stage of the classic ‘Wilson Cycle’ offer a ‘template’ for interpreting magmatic compositions in analogous settings elsewhere.  相似文献   
185.
186.
Ramp features in the turbulent scalar field are associated with turbulent coherent structures, which dominate energy and mass fluxes in the atmospheric surface layer. Although finer scale ramp-like shapes embedded within larger scale ramp-like shapes can readily be perceived in turbulent scalar traces, their presence has largely been overlooked in the literature. We demonstrate the signature of more than one ramp scale in structure functions of the turbulent scalar field measured from above bare ground and two types of short plant canopies, using structure-function time lags ranging in scale from isotropic to larger than the characteristic coherent structures. Spectral analysis of structure functions was used to characterize different scales of turbulent structures. By expanding structure function analysis to include two ramp scales, we characterized the intermittency, duration, and surface renewal flux contribution of the smallest (i.e., Scale One) and the dominant (i.e., Scale Two) coherent structure scales. The frequencies of the coherent structure scales increase with mean wind shear, implying that both Scale One and Scale Two are shear-driven. The embedded Scale One turbulent structure scale is ineffectual in the surface-layer energy and mass transport process. The new method reported here for obtaining surface renewal-based scalar exchange works well over bare ground and short canopies under unstable conditions, effectively eliminating the α calibration for these conditions and forming the foundation for analysis over taller and more complex surfaces.  相似文献   
187.
Measurements of the sulfur dioxide (SO2) emission rate from three Guatemalan volcanoes provide data which are consistent with theoretical and laboratory studies of eruptive and shallow magma chamber processes. In particular, unerupted magma makes a major contribution to the measured SO2 emission rates at Santiaguito, a continuously erupting dacitic volcanic dome. Varying shallow magma convection rates can explain the variations in SO2 emission rates at Santiaguito. At Fuego, a basaltic volcano currently in repose, SO2 emission rate measurements are consistent with a high level magma body that is crystallizing and releasing volatiles. At Pacaya, a continuously erupting basaltic volcano, recent SO2 emission rate measurements support laboratory simulation studies of strombolian eruptions; these studies indicate that the majority of gas escapes during eruptions and little gas escapes between eruptions.Average SO2 emission rates over the last 20 years for Santiaguito, Fuego and Pacaya are 80, 160 and 260 Mg/d, respectively. On a global scale, these three volcanoes account for 1% of the annual global volcanic output of SO2. Santiaguito and Pacaya, together, emit 6% of the total annual SO2 emitted by continuously erupting volcanoes.Even though SO2 measurements at these volcanoes have been made infrequently and by different investigators, the collective data help to establish a useful baseline by which to judge future changes. A more complete record of SO2 emission rates from these volcanoes could lead to a better understanding of their eruption mechanisms and reduce the impact of their future eruptions on Guatemalan society.  相似文献   
188.
189.
Material transfer between estuaries and the nearshore zone has long been of interest, but information on the processes affecting Pacific Northwest estuaries has lagged behind other areas. The west coast of the U.S. is a region of seasonally variable upwelling that results in enhanced phytoplankton production in the nearshore zone. We examined estuarine-nearshore links over time by measuring physical oceanographic variables and chlorophylla concentration from an anchor station in South Slough, Oregon. Data was collected during 24-h cruises conducted at approximately weekly intervals during summer 1996 and spring 1997. The results demonstrate that the physical oceanography of this estuarine site was strongly influenced by the coastal ocean. Marine water reached the estuarine site on every sampled tide, and chlorophylla was clearly advected into the estuary with this ocean water. In contrast, phytoplankton concentrations were comparatively reduced in the estuarine water. There were, however, large fluctuations in the import of chlorophyll over the course of the summer. These variations likely reflect upwelling-generated phytoplankton production in the coastal ocean and subsequent cross-shelf transport to the estuary. Suspension feeding organisms in South Slough likely depend on the advection of this coastally-derived phytoplankton. The large allochthonous chlorophyll input measured for this system appears dissimilar from most estuaries studied to date. Previous investigations have focused on the outwelling and inwelling of materials in estuaries. We must now consider the influence of coastal upwelling and downwelling processes on estuarine material exchange.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号