首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   2篇
地球物理   11篇
地质学   18篇
海洋学   2篇
天文学   3篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   5篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  1999年   1篇
  1996年   1篇
  1993年   1篇
  1975年   1篇
排序方式: 共有34条查询结果,搜索用时 62 毫秒
21.
Previous work has demonstrated that suspended clay accumulating on filter paper can act as a membrane and affect chemical concentrations in the filtered water. For this reason, we looked at the possibility of membrane effects altering water chemistry during filtering for Missouri Rivers. Membrane effects during filtering could cause an initial decrease in sample concentrations as the filter cake began acting as a membrane, with a corresponding increase of concentration as the concentration polarization layer was formed behind the filter cake. Samples from five Missouri rivers were tested: the Mississippi River at St. Louis, the Missouri River at Kansas City, the Gasconade River at Jerome, the Osage River at the junction of Highway 63 and 50, and the Meramec River one mile downstream from springs. Three 1-l samples were filtered from each river using a 0.45 m filter. An unfiltered sample from each river underwent dialysis to determine the actual ion concentrations of the overall sample. None of the filtered samples demonstrated a statistically significant alteration of water chemistry using current filtering techniques in this preliminary study, suggesting that membrane effects due to accumulation of clay particles on filter paper may not be a common problem in Missouri and similar regions.  相似文献   
22.
 The massive unit of a lava flow from Porri volcano (Salina, Aeolian Islands) displays many unusual structures related to the physical interaction between two different magmas. The magma A represents approximately 80% of the exposed lava surface; it has a crystal content of 51 vol.% and a dacitic glass composition (SiO2=63–64 wt.%). The magma B has a basaltic-andesite glass composition (SiO2=54–55 wt.%) and a crystal content of approximately 18 vol.%. It occurs as pillow-like enclaves, banding, boudin-like and rolling structures which are hosted in magma A. Structural analysis suggests that banding and boudin-like structures are the result of the deformation of enclaves at different shear strain. The linear correlation between strain and stratigraphic height of the measured elements indicates a single mode of deformation. We deduce that the component B deformed according to a simple shear model. Glass analyses of the A–B boundary indicate that A and B liquids mix together at high shear strain, whereas only mingling occurs at low shear strain. This suggests that the amount of deformation (i.e. forced convection) plays an important role in the formation of hybrid magmas. High shear strain may induce stretching, shearing and rolling of fluids which promote both forced convection and dynamical diffusion processes. These processes allow mixing of magmas with large differences in their physical properties. Received: 15 July 1995 / Accepted: 30 May 1996  相似文献   
23.
Debris avalanches produced from the collapse of volcanic edifices are destructive events that involve volumes up to two orders of magnitude larger (cubic kilometer) than most non-volcanic rock and debris avalanches. We replicate the motion and spreading of several volcanic collapses by means of a depth-averaged quasi-3D numerical code. The model assumes a frictional internal rheology and a variable basal rheology (i.e frictional, Voellmy and plastic). We back analyzed seven case-studies against observations reported in the literature to provide a set of calibrated cases. The ASTER and SRTM satellite-derived digital elevation models were used as topographic data. The numerical model captures the main features of the propagation process, including travel distance, lateral spreading and run up. At varying triggering factors and material characteristics the best fitting parameters span in a narrow interval and differ from those typical of non-volcanic rock and debris avalanches. The bulk basal friction angles (the sole parameter required in the frictional rheology) range within 3° and 7.5° whereas typical values for non-volcanic debris avalanches vary from 11° to 31°. The consistency of the back analyzed parameters is encouraging for a possible use of the model in the perspective of hazard mapping. The reconstruction of the pre-event topography is critical, and it is associated to large uncertainty. The quality of the terrain data, more than the resolution of the DEMs used, is relevant for the modeling. Resampling the original square grid to larger cell sizes determines a low increase in the back analyzed rheological parameters, as a result of the lower roughness of the terrain.  相似文献   
24.
It is widely recognized that clays and shales can demonstrate membrane properties. When a hydraulic head differential exists across a membrane-functioning clay-rich barrier, some of the solute is rejected by the membrane. This process is known as hyperfiltration. Some shallow geologic environments, including aquitards bounding shallow perched aquifers and unconfined aquifers, some river and stream beds, and some lake bottoms contain clay–soil mixes. Many engineering structures such as landfill liners, mixed soil augered barriers, and retention pond liners also consist of soil–clay mixes. No previous testing has been performed to investigate the likelihood that hyperfiltration may occur in such mixed soils. Therefore, we performed five experiments using different mixes of Na-bentonite and glass beads (100, 50, 25, 12 and 0% clay) to determine if any of these mixes exhibited membrane properties and to investigate what effect clay content had upon the membrane properties of the soil. Each mixture was compacted to 345 kPa and the sample mixtures were 0.58–0.97 mm thick. All the experiments used an approximately 35 ppm Cl solution under an average 103 kPa hydraulic head. Experimental results show that all the simulated clay–sand mixtures do exhibit measurable membrane properties under these conditions. Values of the calculated reflection coefficient ranged from a low of 0.03 for 12% bentonite to 0.19 for 100% bentonite. Solute rejection ranged from 5.2% for 12% clay to a high of over 30% for the 100% clay. The 100% glass bead sample exhibited no membrane properties.  相似文献   
25.
26.
The activity of natural radionuclides in soil has become an environmental concern for local public and national authorities because of the harmful effects of radiation exposure on human health. In this context, modelling and mapping the activity of natural radionuclides in soil is an important research topic. The study was aimed to model, in a spatial sense, the soil radioactivity in an urban and peri-urban soils area in southern Italy to analyse the seasonal influence on soil radioactivity. Measures of gamma radiation naturally emitted through the decay of radioactive isotopes (potassium, uranium and thorium) were analysed using a geostatistical approach to map the spatial distribution of soil radioactivity. The activity of three radionuclides was measured at 181 locations using a high-resolution ?-ray spectrometry. To take into account the influence of season, the measurements were carried out in summer and in winter. Activity data were analysed by using a geostatistical approach and zones of relatively high or low radioactivity were delineated. Among the main processes which influence natural radioactivity such as geology, geochemical, pedological, and ecological processes, results of this study showed a prominent control of radio-emission measurements by seasonal changes. Low natural radioactivity levels were measured in December associated with winter weather and moist soil conditions (due to high rainfall and low temperature), and higher activity values in July, when the soil was dry and no precipitations occurred.  相似文献   
27.
28.
Few phosphorus-depleted coastal ecosystems have been examined for their ability to hydrolyze phosphomonoesters. We examined seasonal (August 2006–April 2007) alkaline phosphatase activity in Florida Bay, a phosphorus-limited shallow estuary, using fluorescent substrate at low concentrations (≤2.0 μM). In situ dissolved inorganic and organic phosphorus levels and phosphomonoester concentrations were also determined. Water column alkaline phosphatase activity was partitioned into two particulate size fractions (>1.2 and 0.2–1.2 μm) and freely dissolved enzymes (<0.2 μm). Water column alkaline phosphatase activity was also compared to leaf and epiphyte activity of the dominant tropical seagrass Thalassia testudinum. Our results indicate: (1) potential alkaline phosphatase activity in Florida Bay is high compared to other marine ecosystems, resulting in rapid phosphomonoester turnover times (2 h). (2) Water column alkaline phosphatase activity dominates, and is split equally between particulate and dissolved fractions. (3) Alkaline phosphatase activity was highest during cyanobacterial blooms, but not when normalized to chl a. These results suggest that dissolved, heterotrophic and autotrophic alkaline phosphatase activity is stimulated by phytoplankton blooms. (4) The dissolved alkaline phosphatase activity is relatively constant, while the particulate activity is seasonally and spatially dynamic, typically associated with phytoplankton blooms. (5) Phosphomonoester concentrations throughout the bay are low, even though potential hydrolysis rates are high. We propose that bioavailable dissolved organic P is hydrolyzed by dissolved and microbial alkaline phosphatase enzymes in Florida Bay. High alkaline phosphatase activity in the bay is also promoted by long hydraulic residence times. This background activity is primarily driven by carbon and phosphorus limitation of microorganisms, and regeneration of enzymes associated with cell lysis. Pulses of inorganic phosphorus and labile organic phosphorus and nitrogen may stimulate autotrophs, particularly cyanobacteria, which in turn promote biological activity that increase alkaline phosphatase activity of both autotrophs and heterotrophs in the bay.  相似文献   
29.
Hyphal penetration, mineral dissolution and neoformation at the lichen–rock interface have been widely characterized by microscopic and spectroscopic studies, and considered as proxies of lichen deterioration of stone substrates. However, these phenomena have not been clearly related to experimental data on physical properties related to stone durability, and the physical consequences of lichen removal from stone surfaces have also been overlooked. In this study, we combine microscopic and spectroscopic characterization of the structural organization of epi‐ and endolithic lichens (Caloplaca marina (Wedd.) Du Rietz, Caloplaca ochracea (Schaer.) Flagey, Bagliettoa baldensis (A.Massal.) Vězda, Porina linearis (Leight.) Zahlbr., Verrucaria nigrescens Pers.) at the interface with limestones of interest for Cultural Heritage (Portland Limestone, Botticino Limestone), with analysis of rock properties (water absorption, surface hardness) relevant for durability, before and after the removal or scraping of lichen thalli. Observations using reflected‐light and electron microscopy, and Raman analyses, showed lichen–limestone stratified interfaces, differing in the presence/absence and depth of lichen anatomical layers (lithocortex, photobiont layer, pervasive and sparse hyphal penetration component) depending on species and lithology. Specific structural organizations of lichen–rock interface were found to be associated with differential patterns of water absorption increase, evaluated by Karsten tube, in comparison with surfaces with microbial biofilms only, even more pronounced after the removal or scraping of the upper structural layers. Equotip measurements on surfaces bearing intact thalli showed lower hardness in comparison with control surfaces. By contrast, after the removal or scraping procedures, Equotip values were similar to or higher than those of controls, suggesting that the increasing open porosity may be related to a biogenic hardening process. Such counterposed patterns of porosity increase and hardening need to be considered when models relating lichen occurrence on limestones and biogeomorphological surface evolution are proposed, and to evaluate the consequences of lichen removal from stone‐built cultural heritage. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
30.
The role of both natural weathering and anthropogenic pollution in controlling the distribution of major oxides and several trace elements in soils, stream sediments, and rocks of the Fiume Grande catchment was evaluated. The contents of major oxides and trace elements in soils appear to be governed by weathering and pedogenetic processes, although the use of fertilizers in agriculture could also partly affect K2O and P2O5 contents. Stream sediments have concentrations of major oxides (except CaO) very similar to soils, as relevant amounts of soil materials are supplied to the stream channels by erosive phenomena. In contrast, stream sediments have concentrations of Cr, Co, Ni, Zn, As, and Pb significantly higher than those of soils, probably due to different conditions and rates of mobility of these elements within the three considered matrices and/or disposal of wastes in the drainage network. Comparison of the concentrations of PHEs in soils with the maximum admissible contents established by the Italian law shows that these limits are too restrictive in some cases and too permissive in other ones. The approach of setting these limits with no consideration for the local geological–geochemical framework may lead to improper management of the territory and its resources. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号