首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6823篇
  免费   276篇
  国内免费   64篇
测绘学   197篇
大气科学   655篇
地球物理   1544篇
地质学   2223篇
海洋学   656篇
天文学   1162篇
综合类   20篇
自然地理   706篇
  2023年   17篇
  2022年   24篇
  2021年   91篇
  2020年   102篇
  2019年   108篇
  2018年   161篇
  2017年   153篇
  2016年   225篇
  2015年   168篇
  2014年   205篇
  2013年   366篇
  2012年   303篇
  2011年   391篇
  2010年   318篇
  2009年   403篇
  2008年   374篇
  2007年   346篇
  2006年   302篇
  2005年   258篇
  2004年   267篇
  2003年   245篇
  2002年   225篇
  2001年   167篇
  2000年   156篇
  1999年   135篇
  1998年   152篇
  1997年   102篇
  1996年   107篇
  1995年   77篇
  1994年   73篇
  1993年   86篇
  1992年   63篇
  1991年   69篇
  1990年   47篇
  1989年   56篇
  1988年   43篇
  1987年   69篇
  1986年   46篇
  1985年   67篇
  1984年   71篇
  1983年   61篇
  1982年   68篇
  1981年   50篇
  1980年   46篇
  1979年   44篇
  1978年   32篇
  1977年   27篇
  1976年   25篇
  1975年   28篇
  1974年   19篇
排序方式: 共有7163条查询结果,搜索用时 19 毫秒
991.
992.
We describe a method for deriving the position and flux of point and compact sources observed by a scanning survey mission. Results from data simulated to test our method are presented, which demonstrate that at least a 10-fold improvement is achievable over that of extracting the image parameters, position and flux, from the equivalent data in the form of pixel maps. Our method achieves this improvement by analysing the original scan data and performing a combined, iterative solution for the image parameters. This approach allows for a full and detailed account of the point-spread function (PSF), or beam profile, of the instrument. Additionally, the positional information from different frequency channels may be combined to provide the flux-detection accuracy at each frequency for the same sky position. Ultimately, a final check and correction of the geometric calibration of the instrument may also be included. The Planck mission was used as the basis for our simulations, but our method will be beneficial for most scanning satellite missions, especially those with non-circularly symmetric PSFs.  相似文献   
993.
994.
We report observations of the formation of two filaments?–?one active and one quiescent, and their subsequent interactions prior to eruption. The active region filament appeared on 17 May 2007, followed by the quiescent filament about 24 hours later. In the 26 hour interval preceding the eruption, which occurred at around 12:50 UT on 19 May 2007, we see the two filaments attempting to merge and filament material is repeatedly heated suggesting magnetic reconnection. The filament structure is observed to become increasingly dynamic preceding the eruption with two small hard X-ray sources seen close to the active part of the filament at around 01:38 UT on 19 May 2007 during one of the activity episodes. The final eruption on 19 May at about 12:51 UT involves a complex CME structure, a flare and a coronal wave. A magnetic cloud is observed near Earth by the STEREO-B and WIND spacecraft about 2.7 days later. Here we describe the behaviour of the two filaments in the period prior to the eruption and assess the nature of their dynamic interactions.  相似文献   
995.
996.
A filament eruption, accompanied by a B9.5 flare, coronal dimming, and an EUV wave, was observed by the Solar TERrestrial Relations Observatory (STEREO) on 19 May 2007, beginning at about 13:00 UT. Here, we use observations from the SECCHI/EUVI telescopes and other solar observations to analyze the behavior and geometry of the filament before and during the eruption. At this time, STEREO A and B were separated by about 8.5°, sufficient to determine the three-dimensional structure of the filament using stereoscopy. The filament could be followed in SECCHI/EUVI 304 Å stereoscopic data from about 12 hours before to about 2 hours after the eruption, allowing us to determine the 3D trajectory of the erupting filament. From the 3D reconstructions of the filament and the chromospheric ribbons in the early stage of the eruption, simultaneous heating of both the rising filamentary material and the chromosphere directly below is observed, consistent with an eruption resulting from magnetic reconnection below the filament. Comparisons of the filament during eruption in 304 Å and Hα? show that when it becomes emissive in He II, it tends to disappear in Hα?, indicating that the disappearance probably results from heating or motion, not loss, of filamentary material.  相似文献   
997.
998.
Over one thousand objects have so far been discovered orbiting beyond Neptune. These trans-Neptunian objects (TNOs) represent the primitive remnants of the planetesimal disk from which the planets formed and are perhaps analogous to the unseen dust parent-bodies in debris disks observed around other main-sequence stars. The dynamical and physical properties of these bodies provide unique and important constraints on formation and evolution models of the Solar System. While the dynamical architecture in this region (also known as the Kuiper Belt) is becoming relatively clear, the physical properties of the objects are still largely unexplored. In particular, fundamental parameters such as size, albedo, density and thermal properties are difficult to measure. Measurements of thermal emission, which peaks at far-IR wavelengths, offer the best means available to determine the physical properties. While Spitzer has provided some results, notably revealing a large albedo diversity in this population, the increased sensitivity of Herschel and its superior wavelength coverage should permit profound advances in the field. Within our accepted project we propose to perform radiometric measurements of 139 objects, including 25 known multiple systems. When combined with measurements of the dust population beyond Neptune (e.g. from the New Horizons mission to Pluto), our results will provide a benchmark for understanding the Solar debris disk, and extra-solar ones as well.  相似文献   
999.
Solar observations have been done with telescopes since their invention—already Galileo looked at the Sun. Despite the Sun’s unusual brightness, telescopes which specialize in solar observations are fairly recent, dating from the late nineteenth century onwards. Today, many solar telescopes have rather little in common with nighttime telescopes. They are adapted to high light flux, a limited range of declination, and to the specifications of solar spectrographs and polarimeters. This paper presents the history of the modern optical solar telescope on the ground and in space, the accompanying evolution of scientific capabilities, and a brief outlook into the future.  相似文献   
1000.
Abstract— It is reasonable to expect that cometary samples returned to Earth by the Stardust space probe have been altered to some degree during capture in aerogel at 6.1 km/s. In order to help interpret the measured structure of these particles with respect to their original cometary nature, a series of coal samples of known structure and chemical composition was fired into aerogel at Stardust capture velocity. This portion of the study analyzed the surfaces of aerogel‐embedded particles using Raman spectroscopy. Results show that particle surfaces are largely homogenized during capture regardless of metamorphic grade or chemical composition, apparently to include a devolatilization step during capture processing. This provides a possible mechanism for alteration of some aliphatic compound‐rich phases through devolatilization of cometary carbonaceous material followed by re‐condensation within the particle. Results also show that the possibility of alteration must be considered for any particular Stardust grain, as examples of both graphitization and amorphization are found in the coal samples. It is evident that Raman G band (~1580 cm?1) parameters provide a means of characterizing Stardust carbonaceous material to include identifying those grains which have been subjected to significant capture alteration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号