首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   859篇
  免费   15篇
  国内免费   12篇
测绘学   18篇
大气科学   76篇
地球物理   179篇
地质学   297篇
海洋学   68篇
天文学   155篇
综合类   2篇
自然地理   91篇
  2021年   5篇
  2020年   13篇
  2019年   8篇
  2018年   7篇
  2017年   21篇
  2016年   22篇
  2015年   13篇
  2014年   17篇
  2013年   41篇
  2012年   23篇
  2011年   37篇
  2010年   32篇
  2009年   36篇
  2008年   34篇
  2007年   35篇
  2006年   27篇
  2005年   18篇
  2004年   21篇
  2003年   26篇
  2002年   28篇
  2001年   17篇
  2000年   11篇
  1999年   5篇
  1998年   12篇
  1997年   12篇
  1996年   14篇
  1995年   15篇
  1994年   12篇
  1993年   18篇
  1992年   11篇
  1991年   9篇
  1990年   10篇
  1989年   14篇
  1988年   12篇
  1987年   18篇
  1986年   11篇
  1985年   15篇
  1984年   14篇
  1983年   20篇
  1982年   30篇
  1981年   20篇
  1980年   15篇
  1979年   19篇
  1978年   16篇
  1977年   10篇
  1976年   10篇
  1975年   12篇
  1974年   8篇
  1973年   5篇
  1972年   6篇
排序方式: 共有886条查询结果,搜索用时 9 毫秒
61.
62.
Because of the relatively low number densities found in typical interstellar clouds, molecules observed there must be produced by a combination of both two-body gas-phase reactions and surface reactions. The latter type includes various catalytic reactions, such as the formation of H2 on transition metal grains. These reactions are very temperature dependent, the grain temperature appearing in the exponential of the rate equations. Because of the small heat capacities of the grains due to their small sizes, they may be subject to considerable fluctuations in temperature. This problem is examined for iron grains and found to be minimal for sizes greater than 100 Å. Steady-state equilibrium temperatures are then calculated for a size distribution of iron particles ranging from 103 to 109 atoms per grain by a refined method of an earlier work by one of us (RGT). The results are that iron grain temperatures are significantly greater than those of dielectric grains of comparable size in the same radiation field.  相似文献   
63.
The zooplankton community of Mission Bay, San Diego, California, was monitored over two years, to study spatial and temporal patterns and the response of zooplankton species composition to environmental variation. Data were collected every two weeks from six stations and included hydrographic parameters, dissolved nutrient concentrations, and phytoplankton and zooplankton species composition. Hydrography varied seasonally, along a spatial gradient from the mouth to the back of the bay, and between the two years around the influence of rainfall. Spatially, Mission Bay could be divided into three regions during this study based on hydrography and zooplankton species composition. Zooplankton species composition followed a predictable seasonal progression, with different groups of species being characteristic to particular times of the year. Variability in zooplankton species composition was also evident between years, as certain species were more common in one or the other year of the study. Spatial patterns were more consistent than temporal ones, and related to distance from the mouth of the bay during much of the year and distance from freshwater inlets during the relatively short rainy season. Multivariate analysis revealed that variation in zooplankton species composition was best related to measured abiotic factors (temperature, salinity, rainfall, and tidal velocity).  相似文献   
64.
An intensive approach to Barrow, Alaska’s adaptations to climate change and variability during recent decades suggests reconsideration of the interconnected roles of science, policy, and decision-making structures. First, profound uncertainties are inherent in unique interactions among the many natural and human factors affecting Barrow’s vulnerability. Science cannot significantly reduce these uncertainties through extensive approaches, but intensive approaches can reconstruct and update local trends, clarify the underlying dynamics, and harvest experience for policy purposes. Second, sound policies to reduce Barrow’s vulnerability to coastal erosion and flooding must incorporate these profound uncertainties and the multiple values of the community. Minimizing vulnerability to climate change is only one of the community’s interests, and must compete with other interests for limited time, attention, funds and other resources. Third, the community itself is in the best position to understand its own context, to decide on sound policies, and to take responsibility for those decisions. In short, local context matters in science, policy, and decision-making structures for adaptation to climate change and variability. Overall, cognitive constraints may be the most important human dimension of climate change. Factoring the global problem into more tractable local problems would make the most of our cognitive capacity.  相似文献   
65.
Following the proposal by Damineli that the central object of Eta Carinae may be an early-type binary, we perform numerical simulations of the X-ray emission from colliding stellar winds. A synthetic light curve has been generated which qualitatively agrees with the recent X-ray variability, and provides further support for the binary model. In particular, the model predicts a rise in the observed X-ray emission towards periastron, followed by a sharp drop and subsequent recovery. This is indeed what is seen in the RXTE light curve, although some problems concerning the X-ray spectrum at periastron still need to be explained. The simulations suggest that the width of the periastron dip will provide strong constraints on the binary and stellar wind properties of the components of Eta Car.  相似文献   
66.
The emission of gas from the earth's crust is a complex process influenced by meteorological and seasonal processes which must be understood for effective application of gas emission to geochemical exploration. Free mercury vapor emission and radon emanation are being measured in a shallow instrument vault at a single nonmineralized site in order to evaluate these influences on gas emission.Mercury concentrations in the instrument vault average 9.5 ng/m3 and range from < 1 ng/m3 to 53 ng/m3 with a strong seasonal effect. Mercury has a direct relationship to vault temperature, air temperature, soil temperature, barometric pressure, water table, and the frozen or thawed state of the soil. Air and soil temperature, barometric pressure, and relative humidity are most important in influencing mercury emission while soil moisture is also important in radon emanation. Diurnal cycles are common but do not occur on all days. A heavy precipitation event on a dry soil seals the soil resulting in a rise in mercury concentration. Precipitation on a soil that is already wet does not increase mercury emission because of the compensation caused by lowering of the soil temperature by the precipitation event. Freezing of the soil changes the physical state of the vault-soil-soil gas-atmosphere system and emits the lowest concentrations of mercury. Phase lag effects are likely important. Stepwise multiple regression of mercury as dependent variable with meteorological and seasonal parameters as independent variables gives a cumulative R value of 0.563 and R2 of 0.317. The short-term noise coupled with phase lags are an important factor.The radon measurements integrated over weekly intervals smooth out much of the short-term noise. Stepwise multiple regression of radon as dependent variable with meteorological and seasonal parameters as independent variables gives a cumulative R value of 0.967 and R2 of 0.934. In this portion of the study the variation in the radon emanation is adequately predicted by meteorological and seasonal parameters.  相似文献   
67.
68.
69.
70.
The objectives of this study were to: (1) measure water column concentrations of Irgarol 1051 and its major metabolite GS26575 annually (2004-2006) during mid-June and mid-August at 14 sites in a study area comprised of three sub-regions chosen to reflect a gradient in Irgarol exposure (Port Annapolis marina, Severn River and Severn River reference area); (2) use a probabilistic approach to determine ecological risk of Irgarol and its major metabolite in the study area by comparing the distribution of exposure data with toxicity-effects endpoints; and (3) measure both functional and structural resident phytoplankton parameters concurrently with Irgarol and metabolite concentrations to assess relationships and determine ecological risk at six selected sites in the three study areas described above. The three-year summer mean Irgarol concentrations by site clearly showed a gradient in concentrations with greater values in Back Creek (400-500 ng/L range), lower values in the Severn River sites near the confluence with Back Creek (generally values less than 100 ng/L) and still lower values (<10 ng/L) at the Severn River reference sites at the confluence with Chesapeake Bay. A similar spatial trend, but with much lower concentrations, was also reported for GS26575. The probability of exceeding the Irgarol plant 10th centile of 193 ng/L and the microcosm NOEC (323 ng/L) suggested high ecological risk from Irgarol exposure at Port Annapolis marina sites but much lower risk at the other sites. There were no statistically significant differences among the three site types (marina, river and reference) with all years combined or among years within a site type for the following functional and structural phytoplankton endpoints: algal biomass, gross photosynthesis, biomass normalized photosynthesis, chlorophyll a, chlorophyll a normalized photosynthesis and taxa richness. Therefore, based on the above results, Irgarol adverse effects predicted from the plant 10th centile and the microcosm NOEC in the high Irgarol exposure area (Back Creek/Port Annapolis marina) were not confirmed with the actual field data for the receptor species (phytoplankton). These results also highlight the importance of unconfined field studies with a chemical gradient in providing valuable information regarding the responses of resident phytoplankton to herbicides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号