首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25194篇
  免费   186篇
  国内免费   928篇
测绘学   1426篇
大气科学   2046篇
地球物理   4668篇
地质学   11866篇
海洋学   1069篇
天文学   1764篇
综合类   2161篇
自然地理   1308篇
  2021年   5篇
  2020年   14篇
  2019年   8篇
  2018年   4767篇
  2017年   4049篇
  2016年   2593篇
  2015年   246篇
  2014年   97篇
  2013年   66篇
  2012年   1008篇
  2011年   2760篇
  2010年   2039篇
  2009年   2344篇
  2008年   1917篇
  2007年   2387篇
  2006年   79篇
  2005年   212篇
  2004年   423篇
  2003年   434篇
  2002年   276篇
  2001年   64篇
  2000年   61篇
  1999年   18篇
  1998年   33篇
  1997年   13篇
  1996年   14篇
  1995年   15篇
  1994年   11篇
  1993年   18篇
  1992年   11篇
  1991年   8篇
  1990年   10篇
  1989年   14篇
  1988年   10篇
  1987年   18篇
  1986年   11篇
  1985年   15篇
  1984年   14篇
  1983年   18篇
  1982年   27篇
  1981年   38篇
  1980年   33篇
  1979年   18篇
  1978年   16篇
  1977年   9篇
  1976年   15篇
  1975年   12篇
  1974年   8篇
  1973年   5篇
  1972年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Due to the complex natural geological conditions, many slope-related geological hazards occur in the Three Gorges Reservoir area in China. This study focuses on the characteristics of landslide development and their underlying mechanisms in this area. A statistical analysis is conducted to determine the characteristics of landslide development in the Wushan area, including the landslide distribution as a function of the elevation, slope, landslide material composition, scale, lithology, boundary conditions, instability mechanism, stratigraphic age, attitude, and sliding direction. The mechanisms of slope instability and the effect on the occurrence of landslides are analyzed. This study provides important reference material for landslide research in the Three Gorges Reservoir area and similar stratigraphic areas.  相似文献   
982.
The rational use of drilling parameters is a hot issue in the field of geotechnical engineering and geological engineering. A new method, for evaluating the bearing capacity of soils using drilling parameters was proposed. First, through the mechanical analysis of the drill bit, the preconditions and theoretical formulas for calculating the bearing capacity of soils using the bit’s torque are clearly defined. Next, drilling tests and dynamic cone penetration tests were performed on miscellaneous fill, silty clay, sandy clay, medium coarse sand and gravel sand, and the empirical formula for calculating the bearing capacity of these soils were given. Then, using the new method and the empirical formula, the bearing capacity of the soil under the roadbed was examined. The test results show that the bit’s torque is a good parameter for the evaluation of the bearing capacity of the soil. Finally, the application scope of the new method and the empirical formula is discussed, and the subsequent research directions are pointed out.  相似文献   
983.
This introductory editorial paper provides a review and prospective outlook of the achievements and challenges in karst research under a changing environment. A brief discussion of the past and future karst research has been focused on: (1) data and new technologies; (2) modeling of karst flow and reactive transport; (3) responses of karst hydrosystems to climate variability and changes across scales.  相似文献   
984.
After completion of an exploration well, sandstones of the Exter Formation were hydraulically tested to determine the hydraulic properties and to evaluate chemical and microbial processes caused by drilling and water production. The aim was to determine the suitability of the formation as a reservoir for aquifer thermal energy storage. The tests revealed a hydraulic conductivity of 1–2 E-5 m/s of the reservoir, resulting in a productivity index of 0.6–1 m3/h/bar. A hydraulic connection of the Exter Formation to the overlaying, artesian “Rupelbasissand” cannot be excluded. Water samples were collected for chemical and microbiological analyses. The water was similarly composed as sea water with a maximum salinity of 24.9 g/L, dominated by NaCl (15.6 g/L Cl and 7.8 g/L Na). Until the end of the tests, the water was affected by drilling mud as indicated by the high pH (8.9) and high bicarbonate concentration (359 mg/L) that both resulted from the impact of sodium carbonate (Na2CO3) additives. The high amount of dissolved organic matter (>?58 mg/L) and its molecular-weight distribution pattern indicated that residues of cellulose, an ingredient of the drilling mud, were still present at the end of the tests. Clear evidence of this contamination gave the measured uranine that was added as a tracer into the drilling mud. During fluid production, the microbial community structure and abundance changed and correlated with the content of drilling mud. Eight taxa of sulfate-reducing bacteria, key organisms in processes like bio-corrosion and bio-clogging, were identified. It can be assumed that their activity will be affected during usage of the reservoir.  相似文献   
985.
Due to its negative impact on the living environment of human beings, ambient air pollution has become a global challenge to human health. In this study, surface observations of six criteria air pollutants, including PM2.5, PM10, SO2, NO2, CO and O3, were collected to investigate the spatial and temporal variation in the Beijing–Tianjin–Hebei (BTH) region during 2013–2016 and to explore the relationships between atmospheric pollutants and meteorological variables using quantile regression model (QRM) and multiple linear regression model (MLRM). The results show that BTH region has experienced significant air pollution, and the southern part generally has more severe conditions. The annual average indicates clear decreasing trends of the particulate matters, SO2 and CO concentrations over the last 4 years and slight increasing trends of NO2 and O3 in several cities. The seasonal and monthly characteristics indicate that the concentrations of five species reach their maxima in the winter and their minima in the summer, whereas O3 has the opposite behaviour. Finally, the pseudo R2 values show that the QRMs have the best performance in the winter, followed by spring, fall, and summer. Specifically, all the meteorological factors have significant impacts on air pollution but change with pollutants and seasons. The MLRM results are generally consistent with the QRM results in all seasons, and the inconsistencies are more common in the fall and winter. The results of this research provide foundational knowledge for predicting the response of air quality to climate change in the BTH region.  相似文献   
986.
The hydrogeochemical characteristics of shallow groundwater in the Grombalia region, northeastern Tunisia, were investigated to evaluate suitability for irrigation and other uses and to determine the main processes that control its chemical composition. A total of 21 groundwater samples were collected from existing wells in January–February 2015 and were analyzed for the major cations and anions concentrations. Conductivity, pH, T°, O2 and salinity were also measured. Interrelationships between chemical parameters were determined by using the scatter matrix method. The suitability of groundwater for irrigation and other uses was assessed by determining the sodium adsorption ratio, soluble-sodium percentage, total dissolved solids, total hardness, Kelly’s index and permeability index values of water samples. The spatial distribution of key parameters was assessed using a GIS-based spatial gridding technique. This analysis indicated that the chemical composition of groundwater in the study area is of Cl–SO4–Na–Ca mixed facies with concentrations of many chemical constituents exceeding known guideline values for irrigation. The salinity of groundwater is controlled by most dominant cation and anion (Na–Cl). A correlation analysis shows that Na+ is the dominant cation and that reverse ion exchange is a dominant process that controls the hydrogeochemical evolution of groundwater in the area. Geospatial mapping of hydrochemical parameters and indices analyzed with the USSL and Wilcox diagrams show distinctive areas of irrigation suitability. In contrast, 76.2% of samples fall in the highly doubtful to unsuitable category and indicate that the central and north-eastern parts of the study area are unsuitable for irrigation due to a high salinity and alkalinity.  相似文献   
987.
Estimation of spatial extent of soil erosion, one of the most serious forms of land degradation, is critical because soil erosion has serious implications on soil fertility, water ecosystem, crop productivity and landscape beauty. The primary objective of the current study was to assess and map the soil erosion intensity and sedimentation yield of Potohar region of Pakistan. Potohar is the rainfed region with truncated and complex topography lying at the top of the Indus Basin, the world’s largest irrigation networks of canals and barrages. Spatially explicit Revised Universal Soil Loss Equation (RUSLE) Model integrated with Remote Sensing-GIS techniques was used for detecting/mapping of erosion prone areas and quantification of soil losses. The results show that the Potohar region is highly susceptible to soil erosion with an average annual soil loss of 19 tons ha?1 year?1 of which the maximum erosion (70–208 tons ha?1 year?1) was near the river channels and hilly areas. The sediment yield due to the erosion is as high as 148 tons ha?1 year?1 with an average of 4.3 tons ha?1 year?1. It was found that 2.06% of the total area falls under severe soil erosion, 13.34% under high erosion, 15.35% under moderate soil erosion while 69.25% of the area lies in the low (tolerable) soil erosion. Chakwal and Jhelum districts of the region are seriously affected by erosion owing to their topography and soil properties. The information generated in this study is a step forward towards proper planning and implementation of strategies to control the erosion and for protection of natural resources. It is, hence, necessary that suitable water harvesting structures be made to control water to prevent soil erosion and provision of water in the lean season in this region. Tree plantation and other erosion control practices such as strip cropping can also minimize soil erosion in this region.  相似文献   
988.
The occurrence of uranium in groundwater is of particular interest due to its toxicological and radiological properties. It has been considered as a relevant contaminant for drinking water even at a low concentration. Uranium is a ubiquitously occurring radionuclide in the environment. Four hundred and fifty-six (456) groundwater samples from different locations of five districts of South Bihar (SB) were collected and concentrations of uranium (U) were analyzed using a light-emitting diode (LED) fluorimetric technique. Uranium concentrations in groundwater samples varied from 0.1 µg l?1 to 238.2 µg l?1 with an average value of 12.3 µg l?1 in five districts of Bihar in the mid-eastern Gangetic plain. This study used hot spot spatial statistics to identify the distribution of elevated uranium concentration in groundwater. The hypothesis whether spatial distribution of high value and low value of U is more likely spatially clustered due to random process near a uranium hotspot in groundwater was tested based on z score and Getis-Ord Gi* statistics. The method implemented in this study, can be utilized in the field of risk assessment and decision making to locate potential areas of contamination.  相似文献   
989.
The seepage evolution behavior of compact rock is significant for the stability and safety of many engineering applications. In this research, both hydrostatic and triaxial compression tests were conducted on compact sandstone using an inert gas, namely argon. A triaxial compression test with a water permeability measurement was carried out to study the difference between the gas permeability and water permeability evolutions during the complete stress–strain process. Based on the experimental data, the hydrostatic stress-dependent gas permeability was discussed firstly. A second-order function was proposed to predict and explain the gas slippage effect. The mechanical properties and crack development of the sandstone samples were discussed to better understand the permeability evolution with crack growth during the complete stress–strain process. The results show that the gas permeability evolution can be divided into five stages according to the different crack growth stages. Then, the permeability changes in the crack closure stress \( \sigma_{\text{cc}} \), crack initiation stress \( \sigma_{\text{ci}} \), crack damage stress \( \sigma_{\text{cd}} \) and peak stress \( \sigma_{\text{p}} \) with confining pressures were analyzed. Finally, we found that the difference between the corrected gas permeability and water permeability can be attributed to the interaction between the water and sandstone grains.  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号