首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225篇
  免费   15篇
  国内免费   1篇
测绘学   7篇
大气科学   10篇
地球物理   63篇
地质学   88篇
海洋学   11篇
天文学   50篇
综合类   1篇
自然地理   11篇
  2023年   1篇
  2022年   4篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   14篇
  2017年   17篇
  2016年   10篇
  2015年   10篇
  2014年   7篇
  2013年   11篇
  2012年   15篇
  2011年   17篇
  2010年   6篇
  2009年   14篇
  2008年   8篇
  2007年   10篇
  2006年   7篇
  2005年   6篇
  2004年   3篇
  2003年   7篇
  2002年   6篇
  2001年   6篇
  2000年   11篇
  1999年   5篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1980年   3篇
  1977年   2篇
  1973年   2篇
  1971年   1篇
  1967年   1篇
排序方式: 共有241条查询结果,搜索用时 15 毫秒
31.
Moldavites are tektites genetically related to the Ries impact structure, located in Central Europe, but the source materials and the processes related to the chemical fractionation of moldavites are not fully constrained. To further understand moldavite genesis, the Cu and Zn abundances and isotope compositions were measured in a suite of tektites from four different substrewn fields (South Bohemia, Moravia, Cheb Basin, Lusatia) and chemically diverse sediments from the surroundings of the Ries impact structure. Moldavites are slightly depleted in Zn (~10–20%) and distinctly depleted in Cu (>90%) relative to supposed sedimentary precursors. Moreover, the moldavites show a wide range in δ66Zn values between 1.7 and 3.7‰ (relative to JMC 3‐0749 Lyon) and δ65Cu values between 1.6 and 12.5‰ (relative to NIST SRM 976) and are thus enriched in heavy isotopes relative to their possible parent sedimentary sources (δ66Zn = ?0.07 to +0.64‰; δ65Cu = ?0.4 to +0.7‰). In particular, the Cheb Basin moldavites show some of the highest δ65Cu values (up to 12.5‰) ever observed in natural samples. The relative magnitude of isotope fractionation for Cu and Zn seen here is opposite to oxygen‐poor environments such as the Moon where Zn is significantly more isotopically fractionated than Cu. One possibility is that monovalent Cu diffuses faster than divalent Zn in the reduced melt and diffusion will not affect the extent of Zn isotope fractionation. These observations imply that the capability of forming a redox environment may aid in volatilizing some elements, accompanied by isotope fractionation, during the impact process. The greater extent of elemental depletion, coupled with isotope fractionation of more refractory Cu relative to Zn, may also hinge on the presence of carbonyl species of transition metals and electromagnetic charge, which could exist in the impact‐induced high‐velocity jet of vapor and melts.  相似文献   
32.
We present observations of electric and magnetic field variations from proton (about few Hz) to electron cyclotron frequencies (about few kHz) obtained by STAFF instrument on Cluster satellites during two cusp crossings, at ∼6 R E altitude, in September 2002. The cusp was identified by the presence of intensive fluxes of counter streaming electrons with low energies and broadband wave activity which is typical for this region. Special attention is given for the interval of measurements when the waveform of the magnetic field fluctuations was taken in this region by CLUSTER satellites. The wave has been processed using the wavelet and bispectral analysis. Results showing the cascade of turbulence and wave-wave interactions are presented in this paper. A three wave process can be responsible for the broadening of the wave spectra in the polar cusp.  相似文献   
33.
A rapid, clean, low-energy, image-based method for determining the grain size distribution of soils by image analysis has been developed. The method is called Sediment Imaging or “Sedimaging”. It develops the grain size distribution for particles in the range between a U.S. Standard Sieve No. 10 (2.0 mm openings) and U.S. Standard Sieve No. 200 (0.075 mm openings) range. The system utilizes a high resolution Nikon D7000 digital single lens reflex camera and image processing software developed specifically for interpreting the images and producing the resulting grain size distribution. The Sedimaging system is more sustainable and environmentally friendly than traditional sieving by virtue of its far lower power needs, less water consumption, longer equipment life and less maintenance. From the environmental and health perspectives, Sedimaging is less noisy, generates no vibrations and produces no airborne particulates. Sedimaging is also significantly faster than sieving and produces thousands of data points compared to typically 8 by sieving; it also automatically computes grain size distribution metrics such as the coefficients of uniformity and gradation.  相似文献   
34.
We present an organic geochemical study of surface sediments of Lake Sarbsko, a shallow coastal lake on the middle Polish Baltic coast. The aim was to provide evidence concerning the origin of the organic matter (OM) and its compositional diversity in surface deposits of this very productive, highly dynamic water body. The content and composition of the OM in the bottom sediments were investigated at 11 sampling stations throughout the lake basin. OM sources were assigned on the basis of bulk indicators [total organic carbon (TOC), total nitrogen (TN), δ13CTOC and δ15N and extractable OM yield], biomarker composition of extractable OM and compound-specific C isotope signatures. The source characterization of autochthonous compounds was verified via phytoplankton analysis. The distribution of gaseous hydrocarbons in the sediments, as well as temporal changes in lake water pH, the concentration of DIC (dissolved inorganic carbon) and δ13CDIC were used to trace OM decomposition.The sedimentary OM is composed mainly of well preserved phytoplankton compounds and shows minor spatial variability in composition. However, the presence of CH4 and CO2 in the bottom deposits provides evidence for microbial degradation of sedimentary OM. The transformation of organic compounds in surface, bottom and pore waters via oxidative processes influences carbonate equilibrium in the lake and seasonally favours precipitation or dissolution of CaCO3.The data enhance our understanding of the relationships between the composition of sedimentary OM and environmental conditions within coastal ecosystems and shed light on the reliability of OM proxies for environmental reconstruction of coastal lakes.  相似文献   
35.
Flow resistance in mountain streams is important for assessing flooding hazard and quantifying sediment transport and bedrock incision in upland landscapes. In such settings, flow resistance is sensitive to grain-scale roughness, which has traditionally been characterized by particle size distributions derived from laborious point counts of streambed sediment. Developing a general framework for rapid quantification of resistance in mountain streams is still a challenge. Here we present a semi-automated workflow that combines millimeter- to centimeter-scale structure-from-motion (SfM) photogrammetry surveys of bed topography and computational fluid dynamics (CFD) simulations to better evaluate surface roughness and rapidly quantify flow resistance in mountain streams. The workflow was applied to three field sites of gravel, cobble, and boulder-bedded channels with a wide range of grain size, sorting, and shape. Large-eddy simulations with body-fitted meshes generated from SfM photogrammetry-derived surfaces were performed to quantify flow resistance. The analysis of bed microtopography using a second-order structure function identified three scaling regimes that corresponded to important roughness length scales and surface complexity contributing to flow resistance. The standard deviation σz of detrended streambed elevation normalized by water depth, as a proxy for the vertical roughness length scale, emerges as the primary control on flow resistance and is furthermore tied to the characteristic length scale of rough surface-generated vortices. Horizontal length scales and surface complexity are secondary controls on flow resistance. A new resistance predictor linking water depth and vertical roughness scale, i.e.  H/σz, is proposed based on the comparison between σz and the characteristic length scale of vortex shedding. In addition, representing streambeds using digital elevation models (DEM) is appropriate for well-sorted streambeds, but not for poorly sorted ones under shallow and medium flow depth conditions due to the missing local overhanging features captured by fully 3D meshes which modulate local pressure gradient and thus bulk flow separation and pressure distribution. An appraisal of the mesh resolution effect on flow resistance shows that the SfM photogrammetry data resolution and the optimal CFD mesh size should be about 1/7 to 1/14 of the standard deviation of bed elevation. © 2019 John Wiley & Sons, Ltd.  相似文献   
36.
The Debrecen Photoheliographic Data catalogue is a continuation of the Greenwich Photoheliographic Results providing daily positions of sunspots and sunspot groups. We analyse the data for sunspot groups focussing on meridional motions and transfer of angular momentum towards the solar equator. Velocities are calculated with a daily shift method including an automatic iterative process of removing the outliers. Apart from the standard differential rotation profile, we find meridional motion directed towards the zone of solar activity. The difference in measured meridional flow in comparison to Doppler measurements and some other tracer measurements is interpreted as a consequence of different flow patterns inside and outside of active regions. We also find a statistically significant dependence of meridional motion on rotation velocity residuals confirming the transfer of angular momentum towards the equator. Analysis of horizontal Reynolds stress reveals that the transfer of angular momentum is stronger with increasing latitude up to about \(40^{\circ}\), where there is a possible maximum in absolute value.  相似文献   
37.
38.
Although electron probe microanalysis and secondary ion mass spectrometry are widely used analytical techniques for geochemical and mineralogical applications, metrologically rigorous quantification remains a major challenge for these methods. Secondary ion mass spectrometry (SIMS) in particular is a matrix‐sensitive method, and the use of matrix‐matched reference materials (RMs) is essential to avoid significant analytical bias. A major problem is that the number of available RMs for SIMS is extremely small compared with the needs of analysts. One approach for the production of matrix‐specific RMs is the use of high‐energy ion implantation that introduces a known amount of a selected isotope into a material. We chose the more elaborate way of implanting a so‐called ‘box‐profile’ to generate a quasi‐homogeneous concentration of the implanted isotope in three dimensions, which allows RMs not only to be used for ion beam analysis but also makes them suitable for EPMA. For proof of concept, we used the thoroughly studied mineralogically and chemically ‘simple’ SiO2 system. We implanted either 47Ti or 48Ti into synthetic, ultra‐high‐purity silica glass. Several ‘box‐profiles’ with mass fractions between 10 and 1000 μg g?1 Ti and maximum depths of homogeneous Ti distribution between 200 nm and 3 μm were produced at the Institute of Ion Beam Physics and Materials Research of Helmholtz‐Zentrum Dresden‐Rossendorf. Multiple implantation steps using varying ion energies and ion doses were simulated with Stopping and Range of Ions in Matter (SRIM) software, optimising for the target concentrations, implantation depths and technical limits of the implanter. We characterised several implant test samples having different concentrations and maximum implantation depths by means of SIMS and other analytical techniques. The results show that the implant samples are suitable for use as reference materials for SIMS measurements. The multi‐energy ion implantation technique also appears to be a promising procedure for the production of EPMA‐suitable reference materials.  相似文献   
39.
Moldavites (Central European tektites) are genetically related to the impact event that produced the ∼24-km diameter Ries crater in Germany, representing one of the youngest large impact structures on Earth. Although several geochronological studies have been completed, there is still no agreement among 40Ar-39Ar ages on both moldavites and glasses from Ries suevites. Even recently published data yielded within-sample mean ages with a nominal spread of more than 0.6 Ma (14.24-14.88 Ma). This age spread, which significantly exceeds current internal errors, must be in part ascribed to geological and/or analytical causes.This study reports the results of a detailed geochronological investigation of moldavites from the Cheb area (Czech Republic), which have never been dated before, and, for comparison, of two samples from type localities, one in southern Bohemia and the other in western Moravia. We used 40Ar-39Ar laser step-heating and total fusion techniques in conjunction with microscale petrographic and chemical characterization. In addition, with the purpose of ascertaining the influence of the dating standards on the age of the Ries impact and making data from this study and literature consistent with the now widely used Fish Canyon sanidine (FCs) standard, we performed a direct calibration of multi-grain splits of the Fish Canyon biotite (FCT-3) with FCs. The intercalibration factors (), determined for eight stack positions in one of the three performed irradiations, were indistinguishable within errors and gave an arithmetic mean and a standard deviation of 1.0086 ± 0.0031 (±2σ), in agreement with previous works suggesting that biotite from the Fish Canyon Tuff is somewhat older (∼0.8%) than the coexisting sanidine.Laser total fusion analysis of milligram to sub-milligram splits of five tektite samples from the Cheb area yielded mostly concordant intrasample 40Ar-39Ar ages, and within-sample weighted mean ages of 14.66 ± 0.08-14.75 ± 0.12 Ma (±2σ internal errors, ages relative to FCs) that overlap within errors. These ages match those obtained for samples from western Moravia (14.66 ± 0.08 Ma) and southern Bohemia (14.68 ± 0.11 Ma), supporting the genetic link between Cheb Basin tektites and moldavites, and, consequently, between Cheb Basin tektites and the Ries impact. In contrast to samples from the Cheb area and Moravia, 40Ar-39Ar ages from total fusion experiments on the Bohemian specimen ranged widely from ∼14.6 to ∼17.0 Ma. Older apparent ages, however, were systematically obtained from fragments characterized by visible surface alteration. Laser step-heating experiments, although displaying slightly disturbed age profiles, were in line with total fusion analyses and yielded well-defined plateau ages of 14.64 ± 0.11-14.71 ± 0.11 Ma (±2σ internal errors, ages relative to FCs).A thorough comparison of our and previous 40Ar-39Ar ages on both moldavites and Ries suevite glasses, recalculated relative to the 40Ar/40K ratio recently determined for FCs using intercalibration factors available in or derivable from the literature, reveals some inconsistencies which may be ascribed to either geological or analytical causes. Based on our data, decay constants in current use in geochronology, and ages calculated relative to FCs, we infer that the age of moldavites is 14.68 ± 0.11 Ma (±2σ, neglecting uncertainties in the 40K decay constants).  相似文献   
40.
Application of dendrochronology and geomorphology to a recently emerged coastal area near Juneau, Alaska, has documented a Little Ice Age (LIA) sea-level transgression to 6.2 m above current sea level. The rise in relative sea level is attributed to regional subsidence and appears to have stabilized by the mid 16th century, based on a sea-cliff eroded into late-Pleistocene glaciomarine sediments. Land began emerging between A.D. 1770 and 1790, coincident with retreat of regional glaciers from their LIA maximums. This emergence has continued since then, paralleling regional glacier retreat. Total Juneau uplift since the late 18th century is estimated to be 3.2 m. The rate of downward colonization of newly emergent coastline by Sitka spruce during the 20th century closely parallels the rate of sea-level fall documented by analysis of local tide-gauge records (1.3 cm/yr). Regional and Glacier Bay LIA loading and unloading are inferred to be the primary mechanisms driving subsidence and uplift in the Juneau area. Climate change rather then regional tectonics has forced relative sea-level change over the last several hundred years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号