首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   15篇
  国内免费   1篇
测绘学   8篇
大气科学   11篇
地球物理   75篇
地质学   101篇
海洋学   15篇
天文学   51篇
综合类   1篇
自然地理   11篇
  2023年   3篇
  2022年   5篇
  2021年   6篇
  2020年   2篇
  2019年   4篇
  2018年   14篇
  2017年   18篇
  2016年   10篇
  2015年   10篇
  2014年   11篇
  2013年   14篇
  2012年   16篇
  2011年   18篇
  2010年   6篇
  2009年   15篇
  2008年   8篇
  2007年   13篇
  2006年   9篇
  2005年   8篇
  2004年   3篇
  2003年   8篇
  2002年   8篇
  2001年   6篇
  2000年   13篇
  1999年   6篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1980年   3篇
  1977年   2篇
  1973年   2篇
  1971年   1篇
  1967年   1篇
排序方式: 共有273条查询结果,搜索用时 15 毫秒
51.
This study quantifies the influence of various intrinsic soil properties including particle roundness, R, sphericity, S, 50% size by weight, D 50, coefficient of uniformity, C u, and the state property of relative density, D r, on the compression and recompression indices, C c and C r, of sands of various geologic origins at pre-crushing stress levels. Twenty-four sands exhibiting a wide range of particle shapes, gradations, and geologic origins were collected for the study. The particle shapes were determined using a computational geometry algorithm which allows characterization of a statistically large number of particles in specimens. One dimensional oedometer tests were performed on the soils. The new data was augmented with many previously published results. Through statistical analyses, simple functional relationships are developed for C c and C r. In both cases, the models utilized only R and D r since other intrinsic properties proved to have lesser direct influence on the compression indices. However, previous studies showed that the contributions of S and C u are felt through their effects on index packing void ratios and thus on D r. The accuracy of the models was confirmed by comparison of predicted and observed C c and C r values.  相似文献   
52.
We investigate 1D exoplanetary distributions using a novel analysis algorithm based on the continuous wavelet transform. The analysis pipeline includes an estimation of the wavelet transform of the probability density function (p.d.f.) without pre-binning, use of optimized wavelets, a rigorous significance testing of the patterns revealed in the p.d.f., and an optimized minimum-noise reconstruction of the p.d.f. via matching pursuit iterations.In the distribution of orbital periods, \(P\), our analysis revealed a narrow subfamily of exoplanets within the broad family of “warm Jupiters”, or massive giants with \(P\gtrsim 300~\mbox{d}\), which are often deemed to be related with the iceline accumulation in a protoplanetary disk. We detected a p.d.f. pattern that represents an upturn followed by an overshooting peak spanning \(P\sim 300\mbox{--}600~\mbox{d}\), right beyond the “period valley”. It is separated from the other planets by p.d.f. concavities from both sides. It has at least 2-sigma significance.In the distribution of planet radii, \(R\), and using the California Kepler Survey sample properly cleaned, we confirm the hints of a bimodality with two peaks about \(R=1.3R_{\oplus }\) and \(R=2.4R_{ \oplus }\), and the “evaporation valley” between them. However, we obtain just a modest significance for this pattern, 2-sigma only at the best. Besides, our follow-up application of the Hartigan and Hartigan dip test for unimodality returns 3 per cent false alarm probability (merely 2.2-sigma significance), contrary to 0.14 per cent (or 3.2-sigma), as claimed by Fulton et al. (2017).  相似文献   
53.
Application of dendrochronology and geomorphology to a recently emerged coastal area near Juneau, Alaska, has documented a Little Ice Age (LIA) sea-level transgression to 6.2 m above current sea level. The rise in relative sea level is attributed to regional subsidence and appears to have stabilized by the mid 16th century, based on a sea-cliff eroded into late-Pleistocene glaciomarine sediments. Land began emerging between A.D. 1770 and 1790, coincident with retreat of regional glaciers from their LIA maximums. This emergence has continued since then, paralleling regional glacier retreat. Total Juneau uplift since the late 18th century is estimated to be 3.2 m. The rate of downward colonization of newly emergent coastline by Sitka spruce during the 20th century closely parallels the rate of sea-level fall documented by analysis of local tide-gauge records (1.3 cm/yr). Regional and Glacier Bay LIA loading and unloading are inferred to be the primary mechanisms driving subsidence and uplift in the Juneau area. Climate change rather then regional tectonics has forced relative sea-level change over the last several hundred years.  相似文献   
54.
The design, in-orbit functioning, and projected performance of the Space Telescope are discussed.Presented at the Symposium Star Catalogues, Positional Astronomy and Celestial Mechanics, held in honor of Paul Herget at the U.S. Naval Observatory, Washington, November 30, 1978.  相似文献   
55.
The habitats utilized by small juvenile (<40 mm carapace length, CL) lobsters (Homarus americanus) are poorly known. We discovered and studied an undescribed juvenile lobster habitat in Nauset Marsh, Cape Cod. Juvenile lobsters (X=26.7 mm carapace length, 6 to 72 mm, n=38) were collected from suction samples primarily 0144 01 in “peat reef” habitats during the period from August 1985 through October 1986. The reefs consisted of large blocks ofSpartina alterniflora peat that had separated from the marsh surface and fallen into adjacent subtidal marsh channels. The smallest lobsters (6 to 7 mm CL) were collected from peat reefs in October 1985, and April and July 1986. In these habitats, juvenile lobster density averaged 2.5 individuals m?2 (range 0–5.7) in suction samples. Peat reef habitats occur in other salt marshes in the northeastern United States and may be an important nursery habitat for small juvenile lobsters.  相似文献   
56.
We studied the population ecology of the snail Melampus bidentatus in relation to patch composition and landscape structure across several salt marsh systems in Connecticut, USA. These marshes have changed significantly over the past 40–50 years including loss of total area, increased areas of short Spartina alterniflora, and decreased areas and fragmentation of Spartina patens. These changes are consistent with tidal inundation patterns that indicate frequent flooding of high marsh areas. Melampus bidentatus densities were highly variable, both among different salt marsh systems and locations within specific marshes, but were generally similar among short Sp. alterniflora and Sp. patens patches within locations. Densities were lowest where the marsh was regularly inundated at high tide and only remnant Sp. patens patches remained. Almost no snails were found in bare patches. Areas that had large Sp. patens patches adjacent to short Sp. alterniflora supported the highest M. bidentatus densities. Population size‐structure varied significantly among patch types, with higher proportions of large individuals in short Sp. alterniflora and hummocked Sp. patens patches than in large and remnant Sp. patens patches. This was likely due to size‐selective predation and/or higher snail growth rates due to better food resource conditions in short Sp. alterniflora patches. Egg mass densities and the number of eggs per egg mass were highest in short Sp. alterniflora. Our results indicate that M. bidentatus is resilient to the level and patterns of salt marsh change evident at our study sites. Indeed, snail densities were significantly higher than reported in other field studies, suggesting that increased patch areas of short Sp. alterniflora and associated environmental conditions at our study sites may provide more favorable habitats than previously when marshes were dominated by extensive Sp. patens meadows. However, there may be threshold conditions that could overwhelm the ability of M. bidentatus to maintain itself within salt marsh systems where changes in hydrology, sedimentation and other factors lead to increased numbers of bare patches and ponds and loss of short Sp. alterniflora and Sp. patens. Studies of the responses of resident and transient fauna to salt marsh change are critically needed in order to better understand the implications for salt marsh ecosystem dynamics and services.  相似文献   
57.
Twenty-two sediment cores raised from the central and eastern parts of the Barents Sea have been studied to reconstruct the evolution of the facies system since the Late Weichselian glaciation. Multiproxy records reveal four lithostratigraphic units, which reflect major development stages of paleoenvironments. Age control is provided by 23 AMS 14C dates for Holocene sections of four cores. Continental moraine deposits of the last glaciation are overlain by proximal glaciomarine facies of the initial deglaciation phase. During this phase, the Barents Sea ice sheet detached from the ground resulting in seawater penetration into troughs, iceberg calving, deposition of IRD and fine-grained glacier meltwater load in newly formed marine basins. The main deglaciation phase is characterized by pulsed sedimentation from various gravity flows resulting in accumulation of distal glaciomarine facies comprising laminated clay and sand sequences with minor IRD. Redistribution of fine-grained suspended matter by bottom currents and brine-induced nepheloid flows combined with biogenic processes and minor ice rafting caused facies diversity of the Holocene marine sediments. The Holocene facies of shelf depressions reflect rather high, but variable productivity responding to climate changes and variations of Atlantic water inflow into the Barents Sea.  相似文献   
58.
Sediment accumulation rates were determined at several sites throughout Nauset Marsh (Massachusetts, U.S.A.), a back-barrier lagoonal system, using feldspar marker horizons to evaluate short-term rates (1 to 2 year scales) and radiometric techniques to estimate rates over longer time scales (137Cs,210Pb,14C). The barrier spit fronting theSpartina-dominated study site has a complex geomorphic history of inlet migration and overwash events. This study evaluates sediment accumulation rates in relation to inlet migration, storm events and sea-level rise. The marker horizon technique displayed strong temporal and spatial variability in response to storm events and proximity to the inlet. Sediment accumulation rates of up to 24 mm year−1were recorded in the immediate vicinity of the inlet during a period that included several major coastal storms, while feldspar sites remote from the inlet had substantially lower rates (trace accumulation to 2·2 mm year−1). During storm-free periods, accumulation rates did not exceed 6·7 mm year−1, but remained quite variable among sites. Based on137Cs (3·8 to 4·5 mm year−1) and210Pb (2·6 to 4·2 mm year−1) radiometric techniques, integrating sediment accumulation over decadal time scales, the marsh appeared to be keeping pace with the relative rate of sea-level rise from 1921 to 1993 of 2·4 mm year−1. At one site, the210Pb-based sedimentation rate and rate of relative sea-level rise were nearly similar and peat rhizome analysis revealed thatDistichlis spicatarecently replaced this onceS. patenssite, suggesting that this portion of Nauset Marsh may be getting wetter, thus representing an initial response to wetland submergence. Horizon markers are useful in evaluating the role of short-term events, such as storms or inlet migration, influencing marsh sedimentation processes. However, sampling methods that integrate marsh sedimentation over decadal time scales are preferable when evaluating a systems response to sea-level rise.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号