首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   19篇
  国内免费   1篇
大气科学   15篇
地球物理   30篇
地质学   73篇
海洋学   2篇
天文学   12篇
自然地理   3篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   2篇
  2019年   5篇
  2018年   8篇
  2017年   8篇
  2016年   16篇
  2015年   7篇
  2014年   10篇
  2013年   7篇
  2012年   5篇
  2011年   12篇
  2010年   8篇
  2009年   5篇
  2008年   7篇
  2007年   7篇
  2006年   5篇
  2004年   4篇
  2003年   6篇
  2001年   1篇
  1981年   1篇
排序方式: 共有135条查询结果,搜索用时 15 毫秒
111.
The sequestration of CO2 occurs naturally in (ultra)‐mafic rocks by carbonation processes and is commonly noted in areas of the seafloor where mantle lithologies are exhumed. As well as carbonation, mantle exhumation is also responsible for rock brecciation. The relationship between carbonation and brecciation is not well constrained. A temporal evolution from syn‐ to post‐tectonic carbonation and brecciation is proposed in line with progressive mantle exhumation. Using a petrological study of brecciated material from IODP drill cores of the Iberia–Newfoundland conjugated margins, we relate crack–seal veins to tectonic brecciation, authigenic calcite with scalenohedral structure to hydraulic brecciation and reworked clasts within cement to (tectono)‐sedimentary processes. Oxygen isotope compositions reveal late‐staged < 50°C carbonate generation in the proximal part of the ocean–continent transition, which have followed an earlier phase of sub‐seafloor carbonate generation. The results are crucial to understand CO2 exchange within the reworked sub‐seafloor in passive margins and oceanic systems.  相似文献   
112.
High‐P rocks such as eclogite and blueschist are metamorphic markers of palaeo‐subduction zones, and their formation at high‐P and low‐T (HP–LT) conditions is relatively well understood since it has been the focus of numerous petrological investigations in the past 40 years. The tectonic mechanisms controlling their exhumation back to the surface are, however, diverse, complex and still actively debated. Although the Cycladic Blueschist Unit (CBU, Greece) is among the best worldwide examples for the preservation of eclogite and blueschist, the proposed P–T evolution followed by this unit within the Hellenic subduction zone is quite different from one study to another, hindering the comprehension of exhumation processes. In this study, we present an extensive petrological data set that permits refinement of the shape of the P–T trajectory for different subunits of the CBU on Syros. High‐resolution quantitative compositional mapping has been applied to support the thermobarometric investigations, which involve semi‐empirical thermobarometry, garnet equilibrium modelling and P–T isochemical phase diagrams. The thermodynamic models highlight the powerful use of reactive bulk compositions approximated from local bulk compositions. The results are also combined with Raman spectrometry of carbonaceous material (RSCM) to retrieve the metamorphic peak temperature distribution at the scale of the island. A major result of this study is the good agreement between all the independent thermobarometric methods, permitting reconstruction of the prograde and retrograde P–T trajectories. Garnet compositional zoning was used to retrieve prograde, peak and retrograde growth stages in line with the results of the P–T isochemical phase diagrams, RSCM temperature and peak‐pressure crystallization of the garnet–omphacite–phengite assemblage. Our results are consistent with previous thermobarometric estimates from other occurrences of CBU rocks (Tinos, Andros), suggesting a multistage exhumation process with (1) early syn‐orogenic exhumation within the subduction channel, (2) isobaric heating at mid‐crustal depths (~10–12 kbar) following thermal re‐equilibration of the lithosphere from a cold syn‐orogenic regime in the subduction zone to a warmer post‐orogenic regime in the back‐arc domain and (3) exhumation and cooling related to a post‐orogenic phase of extension following slab retreat. Expanding to the general aspects of subduction zones, we suggest that such metamorphic evolution of HP–LT units should be regarded as a characteristic feature of exhumation driven by slab rollback.  相似文献   
113.
114.
115.
116.
In the Western Alps, the Piemont-Ligurian oceanic domain records blueschist to eclogite metamorphic conditions during the Alpine orogeny. This domain is classically divided into two “zones” (Combin and Zermatt-Saas), with contrasting metamorphic evolution, and separated tectonically by the Combin fault. This study presents new metamorphic and temperature (RSCM thermometry) data obtained in Piemont-Ligurian metasediments and proposes a reevaluation of the P–T evolution of this domain. In the upper unit (or “Combin zone”) temperatures are in the range of 420–530 °C, with an increase of temperature from upper to lower structural levels. Petrological evidences show that these temperatures are related to the retrograde path and to deformation at greenschist metamorphic conditions. This highlights heating during exhumation of HP metamorphic rocks. In the lower unit (or “Zermatt-Saas zone”), temperatures are very homogeneous in the range of 500–540 °C. This shows almost continuous downward temperature increase in the Piemont-Ligurian domain. The observed thermal structure is interpreted as the result of the upper and lower unit juxtaposition along shear zones at a temperature of ~500 °C during the Middle Eocene. This juxtaposition probably occurred at shallow crustal levels (~15–20 km) within a subduction channel. We finally propose that the Piemont-Ligurian Domain should not be viewed as two distinct “zones”, but rather as a stack of several tectonic slices.  相似文献   
117.
118.
The oxygen isotope fractionation between the structural carbonate of inorganically precipitated hydroxyapatite (HAP) and water was determined in the range 10-37 °C. Values of 1000 ln α() are linearly correlated with inverse temperature (K) according to the following equation: 1000 ln α() = 25.19 (±0.53)·T−1 − 56.47 (±1.81) (R2 = 0.998). This fractionation equation has a slightly steeper slope than those already established between calcite and water ( [O’Neil et al., 1969] and [Kim and O’Neil, 1997]) even though measured fractionations are of comparable amplitude in the temperature range of these experimental studies. It is consequently observed that the oxygen isotope fractionation between apatite carbonate and phosphate increases from about 7.5‰ up to 9.1‰ with decreasing temperature from 37 °C to 10 °C. A compilation of δ18O values of both phosphate and carbonate from modern mammal teeth and bones confirms that both variables are linearly correlated, despite a significant scattering up to 3.5‰, with a slope close to 1 and an intercept corresponding to a 1000 ln α() value of 8.1‰. This apparent fractionation factor is slightly higher or close to the fractionation factor expected to be in the range 7-8‰ at the body temperature of mammals.  相似文献   
119.
We report Li isotopic compositions, for river waters and suspended sediments, of about 40 rivers sampled within the Mackenzie River Basin in northwestern Canada. The aim of this study is to characterize the behaviour of Li and its isotopes during weathering at the scale of a large mixed lithology basin. The Mackenzie River waters display systematically heavier Li isotopic compositions relative to source rocks and suspended sediments. The range in δ7Li is larger in dissolved load (from +9.3‰ to +29.0‰) compared to suspended sediments (from −1.7‰ to +3.2‰), which are not significantly different from δ7Li values in bedrocks. Our study shows that dissolved Li is essentially derived from the weathering of silicates and that its isotopic composition in the dissolved load is inversely correlated with its relative mobility when compared to Na. The highest enrichment of 7Li in the dissolved load is reported when Li is not or poorly incorporated in secondary phases after its release into solution by mineral dissolution. This counterintuitive observation is interpreted by the mixing of water types derived from two different weathering regimes producing different Li isotopic compositions within the Mackenzie River Basin. The incipient weathering regime characterizing the Rocky Mountains and the Shield areas produces 7Li enrichment in the fluid phase that is most simply explained by the precipitation of oxyhydroxide phases fractionating Li isotopes. The second weathering regime is found in the lowland area and produces the lower δ7Li waters (but still enriched in 7Li compared to bedrocks) and the most Li-depleted waters (compared to Na). Fractionation factors suggest that the incorporation of Li in clay minerals is the mechanism that explains the isotopic composition of the lowland rivers. The correlation of boron and lithium concentrations found in the dissolved load of the Mackenzie Rivers suggests that precipitation of clay minerals is favoured by the relatively high residence time of water in groundwater. In the Shield and Rocky Mountains, Li isotopes suggest that clay minerals are not forming and that secondary minerals with stronger affinity for 7Li appear.Although the weathering mechanisms operating in the Mackenzie Basin need to be characterized more precisely, the Li isotope data reported here clearly show the control of Li isotopes by the weathering intensity. The spatial diversity of weathering regimes, resulting from a complex combination of factors such as topography, geology, climate and hydrology explains, in fine, the spatial distribution of Li isotopic ratios in the large drainage basin of the Mackenzie River. There is no simple relationship between Li isotopic composition and chemical denudation fluxes in the Mackenzie River Basin.  相似文献   
120.
The modeling of thick vadose zones is particularly challenging because of difficulties in collecting a variety of measured sediment properties, which are required for parameterizing the model. Some models rely on synthetic data, whereas others are simplified by running as homogeneous sediment domains and relying on a single set of sediment properties. Few studies have simulated flow processes through a thick vadose zone using real and comprehensive data sets comprising multiple measurements. Here, we develop a flow model for a 7-m-thick vadose zone. This model, combining the numerical codes CTRAN/W with SEEP/W, includes the measured sediment hydraulic properties of the investigated vadose zone and incorporates the actual climate and subsurface conditions of the study site (precipitations, water-table elevations, and stable isotope data). The model is calibrated by fitting the simulated and measured vertical profiles of water content. Our flow model calculates a transit time of 1 year for the travel of water through the 7-m vadose zone; this estimate matches stable isotope-based results obtained previously for this site. A homogeneous sediment domain flow model, which considers only a single set of sediment properties, produces a transit time that is approximately half the duration of that of the heterogeneous flow model. This difference highlights the importance of assuming heterogeneous material within models of thick vadose zones and testifies to the advantage gained when using real sediment hydraulic properties to parametrize a flow model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号