首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5320篇
  免费   554篇
  国内免费   159篇
测绘学   235篇
大气科学   606篇
地球物理   1958篇
地质学   2184篇
海洋学   267篇
天文学   350篇
综合类   187篇
自然地理   246篇
  2023年   4篇
  2022年   9篇
  2021年   27篇
  2020年   7篇
  2019年   14篇
  2018年   441篇
  2017年   380篇
  2016年   264篇
  2015年   156篇
  2014年   121篇
  2013年   123篇
  2012年   652篇
  2011年   432篇
  2010年   123篇
  2009年   135篇
  2008年   123篇
  2007年   117篇
  2006年   129篇
  2005年   830篇
  2004年   874篇
  2003年   658篇
  2002年   174篇
  2001年   71篇
  2000年   43篇
  1999年   15篇
  1998年   5篇
  1997年   17篇
  1996年   11篇
  1992年   2篇
  1991年   9篇
  1990年   9篇
  1989年   5篇
  1987年   4篇
  1981年   2篇
  1980年   3篇
  1976年   3篇
  1975年   4篇
  1973年   2篇
  1969年   2篇
  1968年   2篇
  1965年   3篇
  1963年   2篇
  1961年   2篇
  1959年   2篇
  1956年   1篇
  1955年   2篇
  1954年   2篇
  1951年   2篇
  1948年   2篇
  1925年   1篇
排序方式: 共有6033条查询结果,搜索用时 15 毫秒
981.
Characteristics of rapid giant landslides in China   总被引:1,自引:0,他引:1  
Factual data for 70 rapid, giant landslides since 1900 show that the occurrence of these landslides was largely predisposed by tectonics, geological structures, lithology and topography, and often triggered by rainfall and earthquakes. In terms of mobile behavior, the giant landslides can be classified into three types: slides, slide-flows and flows. It is found that each type of landslide was constrained to certain geologic and topographic regimes. There are good correlations between kinematic parameters of landslides and slope geometries, which confirm the important role played by topographical condition in the mobile behavior of landslides. Moreover, it is also found that each type of landslide presents distinct geotechnical characteristics in terms of nature of the slip zone and properties of sliding mass. Brief analyses of five typical cases illustrate that landslide mechanisms can be conceptually depicted by failure mechanisms of their slip zones prior to onset of movement and following energy conversion during movement. Problems and questions related to experience in China suggest that comprehensive and systematic investigation and study on rapid giant landslides are urgently needed.  相似文献   
982.
The crystal structure of the cheralite—CaTh(PO4)2—has been revisited by neutron diffraction and its behaviour under high pressure investigated by X-ray diffraction up to 36?GPa. The neutron diffraction data at ambient pressure gave a more accurate determination of the Ca/Th cation position than previous XRD data, taking advantage that the neutron scattering lengths of calcium and thorium are of same order of magnitude. The nuclear density distribution was also determined using the maximum entropy method (MEM) confirming that the two cations are not located at the same position in the unit cell but are slightly displaced from one another along a specific direction in order to minimize the electrostatic repulsion with the surrounding phosphorus atoms. At high pressure, the compound did not show any phase transition or amorphization. From the evolution of the unit-cell volume as a function of the pressure, the zero-pressure bulk modulus B0 and its pressure derivative B0 have been determined by fitting the experimental compressibility curve to the Birch–Murnaghan equation of state. The results are B0?=?140(2) GPa and B 0 ?=?4.4(4) GPa.  相似文献   
983.
The 2010 eruption of Merapi (VEI 4) was the volcano’s largest since 1872. In contrast to the prolonged and effusive dome-forming eruptions typical of Merapi’s recent activity, the 2010 eruption began explosively, before a new dome was rapidly emplaced. This new dome was subsequently destroyed by explosions, generating pyroclastic density currents (PDCs), predominantly consisting of dark coloured, dense blocks of basaltic andesite dome lava. A shift towards open-vent conditions in the later stages of the eruption culminated in multiple explosions and the generation of PDCs with conspicuous grey scoria and white pumice clasts resulting from sub-plinian convective column collapse. This paper presents geochemical data for melt inclusions and their clinopyroxene hosts extracted from dense dome lava, grey scoria and white pumice generated during the peak of the 2010 eruption. These are compared with clinopyroxene-hosted melt inclusions from scoriaceous dome fragments from the prolonged dome-forming 2006 eruption, to elucidate any relationship between pre-eruptive degassing and crystallisation processes and eruptive style. Secondary ion mass spectrometry analysis of volatiles (H2O, CO2) and light lithophile elements (Li, B, Be) is augmented by electron microprobe analysis of major elements and volatiles (Cl, S, F) in melt inclusions and groundmass glass. Geobarometric analysis shows that the clinopyroxene phenocrysts crystallised at depths of up to 20 km, with the greatest calculated depths associated with phenocrysts from the white pumice. Based on their volatile contents, melt inclusions have re-equilibrated during shallower storage and/or ascent, at depths of ~0.6–9.7 km, where the Merapi magma system is interpreted to be highly interconnected and not formed of discrete magma reservoirs. Melt inclusions enriched in Li show uniform “buffered” Cl concentrations, indicating the presence of an exsolved brine phase. Boron-enriched inclusions also support the presence of a brine phase, which helped to stabilise B in the melt. Calculations based on S concentrations in melt inclusions and groundmass glass require a degassing melt volume of 0.36 km3 in order to produce the mass of SO2 emitted during the 2010 eruption. This volume is approximately an order of magnitude higher than the erupted magma (DRE) volume. The transition between the contrasting eruptive styles in 2010 and 2006 is linked to changes in magmatic flux and changes in degassing style, with the explosive activity in 2010 driven by an influx of deep magma, which overwhelmed the shallower magma system and ascended rapidly, accompanied by closed-system degassing.  相似文献   
984.
Compositional zoning and exsolution patterns of alkali feldspars in carbonatite-bearing cognate syenites from the 6.3 km3 (D.R.E) phonolitic Laacher See Tephra (LST) deposit in western Germany (12.9 ka) are reported. These rocks represent the cooler outer portion and crystal-rich products of a cooling magma reservoir at upper crustal levels. Major and trace-element difference between cores and rims in sanidine crystals represent two generations of crystal growth separated by unmixing of a carbonate melt. Trace-element differences measured by LA–ICP–MS are in accordance with silicate–carbonate unmixing. Across the core–rim boundary, we extracted gray-scale profiles from multiple accumulations of back-scattered electron images. Gray scales directly represent K/Na ratios owing to low concentrations of Ba and Sr (<?30 ppm). Diffusion gradients are modeled to solve for temperature using known pre-eruptive U–Th zircon ages (0–20 ky) of each sample (Schmitt et al., J Petrol 51:1053–1085, 2010). Estimated temperatures range from 630 °C to 670 °C. For the exsolution boundaries, a diffusive homogenization model is constrained by the solvus temperature of ~ 712_725 °C and gives short time scales of only 15–50 days. Based on our results, we present a model for the temperature–time history of these rocks. The model also constrains the thermal variation across the cooling crystal-rich carapace of the magma reservoir over 20 ka and suggests a thermal reactivation of cumulates, the cooling carapace, and probably the entire system only a few years prior to the explosive eruption of the remaining molten core of the phonolitic magma reservoir.  相似文献   
985.
986.
987.
On February 22, 2011, an earthquake of magnitude 6.3 occurred very near to the city of Christchurch, New Zealand. The consequence came as a shock to many seismologists and earthquake engineers as New Zealand is known as the homeland of modern earthquake-resistant design techniques. After the earthquake, the focus of discussion has been on the collapse of buildings, while few queried the adequacy of design requirements. Importantly, similar “inadequacy” seems to repeat all around the world more frequently than expected. Hence, the question statement in the title concerns not only Christchurch, but anywhere in the world.  相似文献   
988.
The extensive spread ofPhragmites australis throughout brackish marshes on the East Coast of the United States is a major factor governing management and restoration decisions because it is assumed that biogeochemical functions are altered by the invasion. Microbial activity is important in providing wetland biogeochemical functions such as carbon and nitrogen cycling, but there is little known about sediment microbial communities inPhragmites marshes. Microbial populations associated with invasivePhragmites vegetation and with native salt marsh cordgrass,Spartina alterniflora, may differ in the relative abundance of microbial taxa (community structure) and in the ability of this biota to decompose organic substrates (community biogeochemical function). This study compares sediment microbial communities associated withPhragmites andSpartina vegetation in an undisturbed brackish marsh near Tuckerton, New Jersey (MUL), and in a brackish marsh in the anthropogenically affected Hackensack meadowlands (SMC). We use phospholipid fatty acid (PLFA) analysis and enzymataic activity to profile sediment microbial communities associated with both plants in each site. Sediment analyses include bulk density, total organic matter, and root biomass. PLFA profiles indicate that the microbial communities differ between sites with the undisturbed site exhibiting greater fatty acid richness (62 PLFA recovered from MUL versus 38 from SMC). Activity of the 5 enzymes analyzed (β-glucosidase, acid phosphatase, chitobiase, and 2 oxidases) was higher in the undisturbed site. Differences between vegetation species as measured by Principal Components Analysis were significantly greater at the undisturbed MUL site than at SMC, and patterns of enzyme activity and PLFAs did not correspond to patterns of root biomass. We suggest that in natural wetland sediments, macrophyte rhizosphere effects influence the community composition of sediment microbial populations. Physical and chemical site disturbances may impose limits on these rhizosphere effects, decreasing sediment microbial diversity and potentially, microbial biogeochemical functions.  相似文献   
989.
Microwave satellite images used for retrieving sea surface temperatures often have such distortions as noise and blurring of the thermal fronts. An image processing approach based on the Mumford-Shah model of optimal image approximation is considered for the solution to this problem. We divide images into flat areas and frontal zones, and then process these areas separately. Image fragmentation is based on automatic detection of the thermal front lines. SST enhancement in frontal zones is achieved by using image deconvolution methods. It has been shown that SST errors in high gradient areas reach 1–3 °C. The proposed approach can decrease this discrepancy.  相似文献   
990.
A massif-type (intrusive) charnockite body in the Eastern Ghats granulite belt, India, is associated with hornblende-bearing mafic granulite, two-pyroxene granulite and enderbitic granulite. The charnockite is characterised by pervasive gneissic foliation (S1). This is axial planar to the folded layers of hornblende-bearing mafic granulite (F1 folds), indicating that the granulite protoliths were present before the development of S1. Two-pyroxene granulite and enderbitic granulite occur as lenticular patches disposed along the foliation and hence could be syngenetic to S1. The tonalitic to granodioritic, metaluminous to weakly peraluminous compositions and relatively high Sr/Rb of the charnockite are consistent with its derivation by partial melting of a mafic protolith. Strong Y depletion, lack of Sr depletion and strongly fractionated REE patterns with high (La/Yb)N ratio, but relatively lower HREE (Gd/Lu) fractionation with marked positive Eu anomalies, suggest major residual hornblende (as well as garnet), but not plagioclase, consistent with the hornblende dehydration melting in the source rocks. Such a residual mineralogy is broadly similar to those of some of the hornblende-bearing mafic granulite inclusions, which have compositional features indicative of a restitic nature. Quantitative modelling supports an origin for the charnockite melts by partial melting of a hornblende-rich mafic granulite source, although source heterogeneity is very likely given the rather variable trace element contents of the charnockite. The whole-rock and mineral compositions of the two-pyroxene granulites and enderbitic granulites are consistent with them representing peritectic phase segregations of hornblende-dehydration melting. A clockwise P-T path implies that melting could have occurred in thickened continental crust undergoing decompression.Editorial responsibility: T.L. Grove  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号