Samples from a single outcrop of the Graenseso spherule layer, Midternaes, South Greenland, consist of a spherule‐bearing dolomixtite with matrix‐supported intraclasts up to 1 m in size. In addition to field observations, we performed mineralogical and whole rock geochemical analysis, including electron microprobe, neutron activation analysis, X‐ray fluorescence, and mass spectrometry of the horizon and the overlying and underlying strata. We show that the spherules are petrographically similar to those in the Zaonega spherule layer, Karelia, Russia. Our petrographic and chemical results are consistent with the previous suggestion that the Grænsesø layer correlates with the Zaonega layer, and it is possible that both layers are related to the Vredefort impact event. The samples containing spherules, as well as the overlying rocks, have elevated REEs compared to the underlying pre‐impact layer, suggestive of a new continental source of sediment that may be coincident with the impact event. Zircons separated from the lower part of the Grænsesø spherule layer display complex age patterns suggesting that they have genetically different origins based on distinctly different Th/U ratios. Crystallization ages of all groups are ≥ 2.8 Ga, with ~2.8 Ga representing a time of major crustal growth globally. Therefore, we cannot conclusively determine in this study if the zircons are locally derived or if they are transported with the ejecta. The spherule layer was deposited by a high‐energy, subaqueous debris flow, an origin that is consistent with the hypothesis that the layer was deposited by impact‐induced waves and/or currents. 相似文献
Climate in central Asia is dominated by the Asian monsoon. The varying impact of the summer monsoon across the Tibetan (Qinghai-Xizang) Plateau provides a strong gradient in precipitation, resulting in lakes of different salinity. Diatoms have been shown to indicate changes in salinity. Thus, transfer functions for diatoms and salinity or related environmental variables represent an excellent tool for paleoclimatic reconstructions in the Tibetan Plateau. Forty freshwater to hypersaline lakes (salinity: 0.1 to 91.7 g l–1) were investigated in the eastern Tibetan Plateau. The relationship between 120 diatom taxa and conductivity, maximum water depth and major ions were analyzed using an indicator value approach, ordination and taxon response models. Canonical correspondence analysis indicated that conductivity was the most important variable, accounting for 10.8% of the variance in the diatom assemblages. In addition water depth and weathering were influential. Weighted Averaging (WA) and Weighted Averaging Partial Least Square (WA-PLS) regression and calibration models were used to establish diatom-conductivity and water depth transfer functions. An optimal two-component WA-PLS model provided a high jack-knifed coefficient of prediction for conductivity (r2jack = 0.92), with a moderate root mean squared error of prediction (RMSEPjack = 0.22), a very low mean bias (0.0003), and a moderate maximum bias (0.26). A WA model with tolerance downweighting resulted in a slightly lower r2jack (0.89) for water depth, with RMSEPjack= 0.26, mean bias = –0.0103 and maximum bias = 0.26. 相似文献
Mineralogy and Petrology - The Northern Central Iranian Micro-continent (CIM) represents Neotethys-related oceanic crust remnants, emplaced due to convergence between CIM and Eurasia plates during... 相似文献
The article deals with a quick clay which was originally deposited in sea water. By leaching in situ the salt content has been reduced to a very small value.
By using a special technique for step-wise replacement of pore water with acrylate plastic, 500Aothick sections were cut with a precision microtome. The sections were photographed in an electron microscope and the micrographs obtained could be used for a study of the clay microstructure.
The microstructure is characterized by a linkage of groups or chains of small particles in and between denser flocs or aggregates or between bigger particles. There is no preferential orientation either of small or of bigger particles.
A preliminary study of the quick clay and of unleached parts of the same clay stratum has not revealed any microstructural differences.
The extreme thinness of the clay sections means that the micrographs reveal pores larger than about 500Ao. Thus the micrographs give a fairly complete picture of the size and shape variation of the micropores in the clay. By measuring the maximum dimension of all pores which could be identified and by using suitable methods for statistical condensation, representative values of mean pore size and two-dimensional “porosity” were obtained. These characteristics are discussed in relation to the permeability and strength properties of the quick clay and of some fresh- and brackish-water deposited clays which have been investigated previously.
Finally, on the basis of the micrographs a hypothesis is made concerning the rate of settlement. 相似文献
The mineralisation potential of Palaeoproterozoic strata from the central Gawler Craton, South Australia, is poorly known. This study defines the timing of Zn-rich skarn formation within Palaeoproterozoic calcsilicate and highlights this as a new mineralisation style for the Gawler Craton. Sulphides within the garnet–diopside skarn in the No. 17 Bore Prospect are predominantly in the form of sphalerite, associated with galena, minor chalcopyrite, pyrrhotite and pyrite. Sulphide is present in disseminated form and as a coarse-grained sulphide within a sericite-rich cavity-fill. Mineralisation is inferred to have formed at 1710 ± 16 Ma through a Sm–Nd isochron from garnet and diopside aliquots. A weakly mineralised and altered granite immediately below the calcsilicate skarn crystallised at 1729 ± 13 Ma (LA-ICPMS U–Pb zircon), within error of the skarn mineralisation. The skarn is interpreted to have formed through the initiation of fluid circulation as a result of high-level granite emplacement within the Palaeoproterozoic strata. Exploration for skarn Zn–Pb deposits such as the No. 17 Bore Prospect is assisted by their geophysical properties. 相似文献
A relative sea-level history is reconstructed for Machiasport, Maine, spanning the past 6000 calendar years and combining two different methods. The first method establishes the long-term (103 yr) trend of sea-level rise by dating the base of the Holocene saltmarsh peat overlying a Pleistocene substrate. The second method uses detailed analyses of the foraminiferal stratigraphy of two saltmarsh peat cores to quantify fluctuations superimposed on the long-term trend. The indicative meaning of the peat (the height at which the peat was deposited relative to mean tide level) is calculated by a transfer function based on vertical distributions of modern foraminiferal assemblages. The chronology is determined from AMS 14C dates on saltmarsh plant fragments embedded in the peat. The combination of the two different approaches produces a high-resolution, replicable sea-level record, which takes into account the autocompaction of the peat sequence. Long-term mean rates of sea-level rise, corrected for changes in tidal range, are 0.75 mm/yr between 6000 and 1500 cal yr B.P. and 0.43 mm/yr during the past 1500 years. The foraminiferal stratigraphy reveals several low-amplitude fluctuations during a relatively stable period between 1100 and 400 cal yr B.P., and a sea-level rise of 0.5 m during the past 300 years. 相似文献
Measurements of the dissolution rate of diopside (r) were carried out as a function of the Gibbs free energy of the dissolution reaction (ΔGr) in a continuously stirred flow-through reactor at 90 °C and pH90°C = 5.05. The overall relation between r and ΔGr was determined over a free energy range of −130.9 < ΔGr < −47.0 kJ mo1−1. The data define a highly non-linear, sigmoidal relation between r and ΔGr. At far-from-equilibrium conditions (ΔGr ? −76.2 kJ mo1−1), a rate plateau is observed. In this free energy range, the rates of dissolution are constant, independent of [Ca], [Mg] and [Si] concentrations, and independent of ΔGr. A sharp decrease of the dissolution rate (∼1 order of magnitude) occurs in the transition ΔGr region defined by −76.2 < ΔGr ? −61.5 kJ mo1−1. Dissolution closer to equilibrium (ΔGr > −61.5 kJ mo1−1) is characterised by a much weaker inverse dependence of the rates on ΔGr. Modeling the experimental r-ΔGr data with a simple classical transition state theory (TST) law as implemented in most available geochemical codes is found inappropriate. An evaluation of the consequences of the use of geochemical codes where the r-ΔGr relation is based on basic TST was carried out and applied to carbonation reactions of diopside, which, among other reactions with Ca- and Mg-bearing minerals, are considered as a promising process for the solid state sequestration of CO2 over long time spans. In order to take into account the actual experimental r-ΔGr relation in the geochemical code that we used, a new module has been developed. It reveals a dramatic overestimation of the carbonation rate when using a TST-based geochemical code. This points out that simulations of water-rock-CO2 interactions performed with classical geochemical codes should be evaluated with great caution. 相似文献