首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   467篇
  免费   25篇
  国内免费   11篇
测绘学   3篇
大气科学   36篇
地球物理   153篇
地质学   147篇
海洋学   47篇
天文学   41篇
自然地理   76篇
  2023年   3篇
  2022年   4篇
  2021年   10篇
  2020年   7篇
  2019年   8篇
  2018年   13篇
  2017年   8篇
  2016年   10篇
  2015年   17篇
  2014年   10篇
  2013年   27篇
  2012年   21篇
  2011年   17篇
  2010年   25篇
  2009年   20篇
  2008年   37篇
  2007年   20篇
  2006年   17篇
  2005年   22篇
  2004年   18篇
  2003年   15篇
  2002年   14篇
  2001年   8篇
  2000年   7篇
  1999年   5篇
  1998年   8篇
  1997年   8篇
  1996年   6篇
  1995年   6篇
  1994年   13篇
  1993年   7篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   5篇
  1987年   7篇
  1986年   3篇
  1984年   8篇
  1983年   5篇
  1982年   4篇
  1981年   7篇
  1980年   4篇
  1979年   5篇
  1978年   6篇
  1977年   7篇
  1975年   2篇
  1974年   2篇
  1973年   4篇
  1972年   3篇
  1968年   2篇
排序方式: 共有503条查询结果,搜索用时 15 毫秒
271.
Atmospheric deposition of nitrogen (AD-N) is a significant source of nitrogen enrichment to nitrogen (N)-limited estuarine and coastal waters downwind of anthropogenic emissions. Along the eastern U.S. coast and eastern Gulf of Mexico, AD-N currently accounts for 10% to over 40% of new N loading to estuaries. Extension of the regional acid deposition model (RADM) to coastal shelf waters indicates that 11, 5.6, and 5.6 kg N ha−1 may be deposited on the continental shelf areas of the northeastern U.S. coast, southeast U.S. coast, and eastern Gulf of Mexico, respectively. AD-N approximates or exceeds riverine N inputs in many coastal regions. From a spatial perspective, AD-N is a unique source of N enrichment to estuarine and coastal waters because, for a receiving water body, the airshed may exceed the watershed by 10–20 fold. AD-N may originate far outside of the currently managed watersheds. AD-N may increase in importance as a new N source by affecting waters downstream of the oligohaline and mesohaline estuarine nutrient filters where large amounts of terrestrially-supplied N are assimilated and denitrified. Regionally and globally, N deposition associated with urbanization (NOx, peroxyacetyl nitrate, or PAN) and agricultural expansion (NH4 + and possibly organic N) has increased in coastal airsheds. Recent growth and intensification of animal (poultry, swine, cattle) operations in the midwest and mid-Atlantic regions have led to increasing amounts of NH4 + emission and deposition, according to a three decadal analysis of the National Acid Deposition Program network. In western Europe, where livestock operations have dominated agricultural production for the better part of this century, NH4 + is the most abundant form of AD-N. AD-N deposition in the U.S. is still dominated by oxides of N (NOx) emitted from fossil fuel combustion; annual NH4 + deposition is increasing, and in some regions is approaching total NO3 deposition. In receiving estuarine and coastal waters, phytoplankton community structural and functional changes, associated water quality, and trophic and biogeochemical alterations (i.e, algal blooms, hypoxia, food web, and fisheries habitat disruption) are frequent consequences of N-driven eutrophication. Increases in and changing proportions of various new N sources regulate phytoplankton competitive interactions, dominance, and successional patterns. These quantitative and qualitative aspects of AD-N and other atmospheric nutrient sources (e.g., iron) may promote biotic changes now apparent in estuarine and coastal waters, including the proliferation of harmful algal blooms, with cascading impacts on water quality and fisheries.  相似文献   
272.
273.
274.
275.
A series of experiments were performed in a rotating annulus of fluid to study effects of rotation rate on planeta-ry-scale baroclinic wave flows. The experiments reveal that change in rotation rate of fluid container causes variation in Rossby number and Taylor number in flows and leads to change in flow patterns and in phase and amplitude of quasi-stationary waves. For instance, with increasing rotation rate, amplitude of quasi-stationary waves increases and phase shifts upstream. On the contrary, with decreasing rotation rate, amplitude of quasi-stationary waves decreases and phase shifts downstream. In the case of the earth’s atmosphere, although magnitude of variation in earth’s rotation rate is very small, yet it causes a very big change in zonal velocity component of wind in the atmosphere and of currents in the ocean, and therefore causes a remarkable change in Rossby number and Taylor number deter-mining regimes in planetary-scale geophysical flows. The observation reveals that intensity and geographic location of subtropic anticyclones in both of the Northern and Southern Hemispheres change consistently with the variation in earth’s rotation rale. The results of fluid experiments are consistent, qualitatively, with observed phenomena in the atmospheric circulation.  相似文献   
276.
During the 1969–1974 Mauna Ulu eruption on Kilauea's upper east rift zone, lava tubes were observed to develop by four principal processes: (1) flat, rooted crusts grew across streams within confined channels; (2) overflows and spatter accreted to levees to build arched roofs across streams; (3) plates of solidified crust floating downstream coalesced to form a roof; and (4) pahoehoe lobes progressively extended, fed by networks of distributaries beneath a solidified crust. Still another tube-forming process operated when pahoehoe entered the ocean; large waves would abruptly chill a crust across the entire surface of a molten stream crossing through the surf zone. These littoral lava tubes formed abruptly, in contrast to subaerial tubes, which formed gradually. All tube-forming processes were favored by low to moderate volume-rates of flow for sustained periods of time. Tubes thereby became ubiquitous within the pahoehoe flows and distributed a very large proportionof the lava that was produced during this prolonged eruption. Tubes transport lava efficiently. Once formed, the roofs of tubes insulate the active streams within, allowing the lava to retain its fluidity for a longer time than if exposed directly to ambient air temperature. Thus the flows can travel greater distances and spread over wider areas. Even though supply rates during most of 1970–1974 were moderate, ranging from 1 to 5 m3/s, large tube systems conducted lava as far as the coast, 12–13 km distant, where they fed extensive pahoehoe fields on the coastal flats. Some flows entered the sea to build lava deltas and add new land to the island. The largest and most efficient tubes developed during periods of sustained extrusion, when new lava was being supplied at nearly constant rates. Tubes can play a major role in building volcanic edifices with gentle slopes because they can deliver a substantial fraction of lava erupted at low to moderate rates to sites far down the flank of a volcano. We conclude, therefore, that the tendency of active pahoehoe flows to form lava tubes is a significant factor in producing the common shield morphology of basaltic volcanoes.  相似文献   
277.
278.
Measurements of vertical erosion of till in water depths ranging from 1.1 m to 5 m have been obtained using a modified micro-erosion meter. Measurements in this environment are hindered by poor underwater visibility and losses due to high erosion rates and ice action. There is considerable spatial and temporal variability in the erosion rates measured but average values show a general increase from 11 mm y?1 in 6 m of water to about 35 mm y?1 in 2.3 m of water and even higher rates closer to shore. The measured values in shallow water are in good agreement with long-term rates extrapolated from shoreline recession. It is suggested that erosion occurs through abrasion and fluid stressing, and that these mechanisms are aided by softening of the upper surface of the till, possibly through cyclic ‘fatigue failure’.  相似文献   
279.
Volcan Popocatepetl, which lies 70 km southeast of Mexico City, is one of the most famous andesite composite volcanoes in the world. With 5,450 m of elevation, it is the second highest peak of Mexico. Located 320 km north of the Middle America Trench, at the centre of the Mexican Volcanic Belt, Volcano Popocatepetl forms the southern active part of a northsouth volcanic complex, the northern part consisting of the eroded Volcano Iztaccihuatl.Since its earliest reported eruption in 1519, Volcano Popocatepetl has had a continuous fumarolic activity in its crater, and in frequent small eruptions (1720, 1802–1804, 1920). In contrast with this light activity, C14 data indicate pre-historical cycles of intense volcanism with paroxysmal pyroclastic eruptions (ash and pumice-flows) alternating with effusive phases and plinian air-fall deposits.The results of a volcanological study and the petrological characteristics of the main volcanic units show that Volcano Popocatepetl is composed of a primitive composite-volcano on which a recent summit cone is superimposed. It has been built during 2 very dissimilar volcanic periods linked by a transitional phase.
Le Volcan Popocatepetl (Mexique): structure, evolution pétrologique et risques
  相似文献   
280.
Solute mixing during sorption of water is analysed for three model soil-water profiles: a step-function profile, an error function complement profile and a curvilinear profile.An analytical solution to the step-function profile was obtained and it was shown that the plane about which salt dispersion occurs is coincident with the plane of separation which assumes that all of the water initially present is pushed ahead by the infiltrating water. Similar results were obtained for the two other model profiles, using numerical analysis. A simplified approach for calculating these planes, based on the delta-function model, is presented for both horizontal and vertical infiltration.Proof is given that the estimate for the plane about which salt dispersion occurs should be made with λ0 (defined in the text) rather than with either λc or λθc (also defined in the text). It was also shown that the solute balance is maintained for all values of the dispersion coefficient for the flux-related boundary condition only.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号