首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   961篇
  免费   23篇
  国内免费   4篇
测绘学   21篇
大气科学   45篇
地球物理   262篇
地质学   290篇
海洋学   60篇
天文学   250篇
综合类   2篇
自然地理   58篇
  2023年   2篇
  2022年   5篇
  2021年   13篇
  2020年   13篇
  2019年   20篇
  2018年   30篇
  2017年   27篇
  2016年   31篇
  2015年   38篇
  2014年   32篇
  2013年   34篇
  2012年   51篇
  2011年   58篇
  2010年   45篇
  2009年   69篇
  2008年   56篇
  2007年   59篇
  2006年   44篇
  2005年   47篇
  2004年   43篇
  2003年   35篇
  2002年   38篇
  2001年   30篇
  2000年   24篇
  1999年   17篇
  1998年   18篇
  1997年   12篇
  1996年   10篇
  1995年   7篇
  1994年   5篇
  1993年   13篇
  1992年   6篇
  1991年   8篇
  1990年   5篇
  1989年   6篇
  1988年   5篇
  1987年   2篇
  1986年   1篇
  1985年   7篇
  1984年   5篇
  1983年   2篇
  1982年   5篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1971年   2篇
  1964年   1篇
排序方式: 共有988条查询结果,搜索用时 0 毫秒
141.
Jeffreys-Bullen P and PKP travel-time residuals observed at more than 50 seismic stations distributed along Italy and surrounding areas in the time interval 1962–1979, indicate the complex velocity pattern of this region. Strong lateral velocity inhomogeneities and low velocity zones are required to explain the observed pattern of residuals. In particular, late arrivals of about 1 sec are observed in the Apenninic mountain range, requiring both greater crustal thickness and low velocity layers, coherent with seismic refraction data and surface wave dispersion measurements. The seismic stations located in the Western and Eastern Alps indicate the presence of high velocities. In the Western Alps the strong azimuthal variation of residuals and the high values of early arrivals have a close relationship to the Ivrea body, an intrusive crustal complex characterized by a velocity as high as 7–7.2 km/sec.A travel-time inversion performed with theAki et al. (1977) block model, confirms the peculiar characteristics and the sharp variations in the lithosphere of the whole Italian region, with values of velocity perturbations between many adjacent blocks, ranging in size from 50 to 100 km, and independent from the earth parametrization chosen, reaching values up to 10% in the lithospheric part and 5% in the asthenosphere. 3-D inversion requires also high velocity along the Tyrrhenian coastal margin, equivalent to an uprise of major crustal and lithospheric discontinuities along this part of the Italian peninsula. Moreover low velocity material must be present in the northern part of the Adriatic foreland, in the lithosphere-asthenosphere system, closely related to the stress and seismicity pattern, and the lateral bending of the lithosphere in the same region.  相似文献   
142.
The results of comprehensive field testing of on‐site vapor‐phase‐based groundwater monitoring methods are presented to demonstrate their utility as a robust and cost‐effective approach for rapidly obtaining volatile organic compounds (VOCs) concentration data from a monitoring well. These methods—which rely on sensitive, commercially available field equipment to analyze vapor in equilibrium with groundwater—proved easy to implement and can be tailored to site‐specific needs, including multilevel sampling. During field testing, low‐flow groundwater concentrations could be reasonably estimated using submerged passive vapor diffusion samplers or field equilibration of collected groundwater (R2 = 0.85 to 0.96). These two methods are not as reliant on in‐well mixing to overcome vertical stratification within wells as simpler headspace methods. The importance of well and aquifer‐specific factors on concentration data (and therefore method selection) is highlighted, including the effect of changing in‐well patterns due to seasonal temperature gradients. Results indicated that vertical stratification was relatively limited within the set of wells included in these studies, resulting in similar performance for short depth‐discrete passive vapor diffusion samplers (constructed from 40‐mL vials) and longer samplers (2.5 to 5 feet in length) designed to cover a larger portion of the screened interval. A year‐long, multi‐event evaluation demonstrated that vapor‐phase‐based monitoring methods are no more variable than conventional groundwater monitoring methods, with both types subject to similar spatial and temporal variability that can be difficult to reduce. Vapor sampling methods represent a promising approach for estimation of groundwater concentrations by reducing the cost liabilities associated with monitoring while providing a more sustainable approach.  相似文献   
143.
Ash samples from tephra layers correlated with the Pomici di Avellino (Avellino Pumice) eruption of Somma-Vesuvius were collected in distal archives and their composition and particle morphology investigated in order to infer their behaviour of transportation and deposition. Differences in composition and particle morphologies were recognised for ash particles belonging to the magmatic Plinian and final phreatomagmatic phases of the eruption. The ash particles were dispersed in opposite directions during the two different phases of the eruption, and these directions are also different from that of coarse-grained fallout deposits. In particular, ash generated during magmatic phase and injected in the atmosphere to form a sustained column shows a prevailing SE dispersion, while ash particles generated during the final phreatomagmatic phase and carried by pyroclastic density currents show a general NW dispersion. These opposite dispersions indicate an ash dispersal influenced by both high and low atmosphere dynamics. In particular, the magmatic ash dispersal was first driven by stratospheric wind towards NE and then the falling particles encountered a variable wind field during their settling, which produced the observed preferential SE dispersal. The wind field encountered by the rising ash clouds that accompanied the pyroclastic density currents of the final phreatomagmatic phase was different with respect to that encountered by the magmatic ash, and produced a NW dispersal. These data demonstrate how ash transportation and deposition are greatly influenced by both high and low atmosphere dynamics. In particular, fine-grained particles transported in ash clouds of small-scale pyroclastic density currents may be dispersed over distances and cover areas comparable with those injected into the stratosphere by Plinian, sustained columns. This is a point not completely addressed by present day mitigation plans in case of renewal of activity at Somma-Vesuvius, and can yield important information also for other volcanoes potentially characterised by explosive activity.  相似文献   
144.
Stratigraphic reconstruction of the Upper Pollara eruption has allowed for the inference of eruptive mechanisms and the distillation of a sedimentological model for pyroclastic density currents (PDCs) moving across variable topography. The pre-eruptive topography in the study area was characterised by a tuff ring-like morphology, with both inward and outward dipping slopes. Highly viscous, moderately porphyritic, dacitic to rhyolitic magmas fed the eruption, which was characterised by a Vulcanian eruptive style. The stratigraphic succession was divided into five eruption units (EUs), which result from different phases of the eruption separated by stases. Sustained columns occurred only during EU1, while PDC generation dominates EU2–5. Lithofacies analysis of the PDC deposits indicates the prevalence of massive coarse-grained deposits on the inner slopes of the Pollara crater, which are interpreted as the deposits of a flow-boundary zone dominated by granular flow or fluid escape regimes. Dune-bedded, massive to stratified lithofacies dominate the outer slopes of the Pollara crater, and are interpreted as the deposits of PDCs with flow-boundary zones in which traction played a major role. Thin, massive PDC deposits are exposed on the sub-horizontal Malfa terrace, and are interpreted as representative of flow-boundary zones dominated by a granular flow regime. The occurrence of stacked deposits indicates that most of the PDCs were characterised by unsteady pulsatory behaviour, with development of trains of pulses during their transport. The downcurrent lithofacies transitions observed for the Upper Pollara deposits have finally been compared with other similar lithofacies associations which have been described for short-lived PDCs at tuff rings, in order to discuss the influence of pre-eruptive topography on lithofacies association.  相似文献   
145.
The Northern Marche coastal belt is characterised by a series of NW-SE trending, NE verging folds forming the easternmost edge of the Apennines thrust front. Several geomorphic features suggest that the folds are still growing and hence that the thrust front is active. The occurrence of several historical and instrumental earthquakes (e.g. 1672, 1690, 1786, 1875, 1916, 1930, 1972, all having Me 5.2) suggests that the thrust faults are also seismogenic.We performed a geomorphological analysis to identify and characterise the faults driving the active folds. Our approach assumes that anomalous drainage patterns and deformed Middle-Late Pleistocene alluvial and coastal terraces are indicators of the vertical component of tectonic strain. We identified, mapped and correlated with sea-level fluctuations a sequence of alluvial and coastal terraces. Longitudinal profiles of six rivers (Conca, Foglia, Metauro, Cesano, Misa, and Esino) show that terraces (1) consistently converge downstream, suggesting that they result from regional uplift that dies out near the coast, and (2) some are slightly warped where they cross anticline axes. We interpreted as coastal terraces several land-surface remnants arranged parallel to the present coastline. Lower remnants clearly top off gently landward-tilted coastal deposits. Reconstructed coastal terraces also seem to be tectonically warped.Our results help characterise the geometry and segmentation of a system that generated the largest earthquakes of the region and suggest the loci of potential seismic gaps. We conclude that the earthquake potential of the densely populated northern Marche coastal belt may be substantially higher than currently estimated.  相似文献   
146.
The growing concern for health‐related problems deriving from pollutants leaching is driving national and international administrations to support the development of tools for evaluating the effects of alternate management scenarios and identifying vulnerable areas. Cropping systems models are powerful tools for evaluating leachates under different environmental, social, and management conditions. As percolating water is the transport vehicle for pollutants transport in soil, a reliable evaluation of water balance models is a fundamental prerequisite for investigating pesticides and nitrate fate. As specific approaches for the evaluation of multi‐layer evolution of state variables are missing, we propose a fuzzy‐based, integrated indicator (ISWC: 0, best; 1, worst) for a comprehensive evaluation of soil water content (SWC) simulations. We aggregated error metrics with others quantifying the homogeneity of errors across different soil layers, the capability of models to reproduce complex dynamics function of both time and soil depth, and model complexity. We tested ISWC on a sample dataset where the models CropSyst and CERES‐Wheat were used to simulate SWC for winter wheat systems. ISWC revealed that, in the explored conditions, the global assessment of the two models' performances allowed identification of CropSyst as the best (average ISWC = 0·441, with a value of 0·537 obtained by CERES‐Wheat), although each model prevailed for some of the metrics. CropSyst presented the highest accuracy (average agreement module = 0·400), whereas CERES‐Wheat's accuracy was slightly worse, although achieved with a simplified modelling approach (average Akaike Information Criterion = − 230·44), thereby favouring large‐area applicability. The non‐univocal scores achieved by the models for the different metrics support the use of multi‐metric evaluation approaches for quantifying the different aspects of water balance model performances. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
147.
This work is inspired by the sudden resurgence of the submersed aquatic vegetation (SAV) bed in the Chesapeake Bay (USA). Because the SAV bed occurs at the mouth of the Bay's main tributary (Susquehanna River), it plays a significant role in modulating sediment and nutrient inputs from the Susquehanna to the Bay. Previous model studies on the impact of submersed aquatic vegetation on the development of river mouth bars lacked a complete mechanistic understanding. This study takes advantage of new advances in 3D computational models that include explicit physical-sedimentological feedbacks to obtain this understanding. Specifically, we used Delft3D, a state-of-the-art hydrodynamic model that provides fine-scale computations of three-dimensional flow velocity and bed shear stress, which can be linked to sediment deposition and erosion. Vegetation is modeled using a parameterization of hydraulic roughness that depends on vegetation height, stem density, diameter, and drag coefficient. We evaluate the hydrodynamics, bed shear stresses, and sediment dynamics for different vegetation scenarios under conditions of low and high river discharge. Model runs vary the vegetation height, density, river discharge, and suspended-sediment concentration. Numerical results from the idealized model show that dense SAV on river mouth bars substantially diverts river discharge into adjacent channels and promotes sediment deposition at ridge margins, as well as upstream bar migration. Increasing vegetation height and density forms sandier bars closer to the river mouth and alteration of the bar shape. Thus, this study highlights the important role of SAV in shaping estuarine geomorphology, which is especially relevant for coastal management. © 2019 John Wiley & Sons, Ltd.  相似文献   
148.
The combined use of field investigation and laboratory analyses allowed the detailed stratigraphic reconstruction of the Pollena eruption (472 AD) of Somma-Vesuvius. Three main eruptive phases were recognized, related either to changes in the eruptive processes and/or to relative changes of melt composition. The eruption shows a pulsating behavior with deposition of pyroclastic fall beds and generation of dilute and dense pyroclastic density currents (PDC). The eruptive mechanisms and transportation dynamics were reconstructed for the whole eruption. Column heights were between 12 and 20 km, corresponding to mass discharge rates (MDR) of 7×106 kg/s and 3.4×107 kg/s. Eruptive dynamics were driven by magmatic fragmentation of a phono-tephritic to tephri-phonolitic magma during Phases I and II, whereas phreatomagmatic fragmentation dominated Phase III. Magma composition varies between phonolitic and tephritic-phonolitic, with melt viscosity likely not in excess of 103 Pa s. The volume of the pyroclastic fall deposits, calculated by using of proximal isopachs, is 0.44 km3. This increases to 1.38 km3 if ash volumes are extrapolated on a log thickness vs. square root area diagram using one distal isopach and column height.Editorial responsibility: R Cioni  相似文献   
149.
It is shown that two of the damping ratios of certain systems composed of a building and a small attachment in resonance are given by the average of the damping ratios of the two independent components. Based on this fact and the fact that the seismic response of a building can always be reduced by increasing its damping, it is demonstrated that the attachment of a small heavily-damped system in resonance can increase the damping of a building and reduce thus its response to earthquake excitations. Numerical solutions are presented to confirm the demonstration, and recommendations are given to calculate the parameters of such systems.  相似文献   
150.
Multi-refractor imaging with stacked refraction convolution section   总被引:2,自引:0,他引:2  
Multi‐refractor imaging is a technique for constructing a single two‐dimensional image of a number of refractors by stacking multiple convolved and cross‐correlated reversed shot records. The method is most effective with high‐fold data that have been obtained with roll‐along acquisition programs because the stacking process significantly improves the signal‐to‐noise ratios. The major advantage of the multi‐refractor imaging method is that all the data can be stacked to maximize the signal‐to‐noise ratios before the measurement of any traveltimes. However, the signal‐to‐noise ratios can be further increased if only those traces that have arrivals from the same refractor are used, and if the correct reciprocal times or traces are employed. A field case study shows that multi‐refractor imaging can produce a cross‐section similar to the familiar reflection cross‐section with substantially higher signal‐to‐noise ratios for the equivalent interfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号