首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   960篇
  免费   30篇
  国内免费   4篇
测绘学   21篇
大气科学   45篇
地球物理   267篇
地质学   291篇
海洋学   60篇
天文学   250篇
综合类   2篇
自然地理   58篇
  2023年   2篇
  2022年   5篇
  2021年   13篇
  2020年   13篇
  2019年   20篇
  2018年   30篇
  2017年   27篇
  2016年   31篇
  2015年   38篇
  2014年   32篇
  2013年   34篇
  2012年   52篇
  2011年   59篇
  2010年   45篇
  2009年   70篇
  2008年   57篇
  2007年   59篇
  2006年   44篇
  2005年   48篇
  2004年   43篇
  2003年   35篇
  2002年   38篇
  2001年   31篇
  2000年   24篇
  1999年   17篇
  1998年   18篇
  1997年   12篇
  1996年   10篇
  1995年   7篇
  1994年   5篇
  1993年   13篇
  1992年   6篇
  1991年   8篇
  1990年   5篇
  1989年   6篇
  1988年   5篇
  1987年   2篇
  1986年   1篇
  1985年   7篇
  1984年   5篇
  1983年   2篇
  1982年   5篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1971年   2篇
  1964年   1篇
排序方式: 共有994条查询结果,搜索用时 15 毫秒
971.
The interpretation of the seismic Vibroseis and explosive TRANSALP profiles has examined the upper crustal structures according to the near-surface geological evidences and reconstructions which were extrapolated to depth. Only the southern sector of the TRANSALP transect has been discussed in details, but its relationship with the whole explored chain has been considered as well. The seismic images indicate that pre-collision and deep collision structures of the Alps are not easily recognizable. Conversely, good records of the Neo-Alpine to present architecture were provided by the seismic sections.Two general interpretation models (“Crocodile” and “Extrusion”) have been sketched by the TRANSALP Working Group [2002]. Both illustrate the continental collision producing strong mechanical interaction of the facing European and African margins, as documented by giant lithosphere wedging processes. Arguments consistent with the “Extrusion” model and with the indentation of Adriatic (Southalpine) lithosphere underneath the Tauern Window (TW) are:
– According to the previous DSS reconstructions, the Bouguer anomalies and the Receiver Functions seismological data, the European Moho descends regularly attaining a zone south of the Periadriatic Lineament (PL). The Moho boundary and its geometry appear to be rather convincing from images of the seismic profile;
– the Tauern Window intense uplift and exhumation is coherent with the strong compression regime, which acted at depth, thus originating the upward and lateral displacement of the mobile and ductile Penninic masses according to the “Extrusion” model;
– the indentation of the Penninic mobile masses within the colder and more rigid Adriatic crust cannot be easily sustained. Wedging of the Adriatic stiffened lower crust, under high stresses and into the weaker Penninic domain, can be a more suitable hypothesis. Furthermore, the intrusion of the European Penninic crustal wedge underneath the Dolomites upper crust is not supported by any significant uplifting of the Dolomites. The total average uplift of the Dolomites during the Neogene appears to be 6−7 times smaller than that recognized in the TW. Markedly the northward dip of the PL, reaching a depth of approximately 20 km, is proposed in our interpretation;
– finally, the Adriatic upper crustal evolution points to the late post-collision change in the tectonic grow-up of the Eastern Alps orogenic chain. The tectonic accretion of the northern frontal zone of the Eastern and Central Alps was interrupted from the Late Miocene (Serravallian–Tortonian) onward, as documented by the Molasse basin evolution. On the contrary, the structural nucleation along the S-vergent tectonic belt of the eastern Southern Alps (Montello–Friuli thrust belt) severely continued during the Messinian and the Plio–Pleistocene. This structural evolution can be considered to be consistent with the deep under-thrusting and wedge indentation of the Adriatic lithosphere underneath the southern side of the Eastern Alps thrust-and-fold belt.
Similarly, the significance of the magmatic activity for the construction of the Southern Alps crust and for its mechanical and geological differentiation, which qualified the evolution of the thrust-and-fold belt, is highlighted, starting with the Permian–Triassic magmatism and progressing with the Paleogene occurrences along the Periadriatic Lineament and in the Venetian Magmatic Province (Lessini–Euganei Hills).  相似文献   
972.
This paper is focused on a geologic "regional rift basin system pattern" and its stratigraphical-geochemical relationship. This is mainly based on the littoral shallow marine sedimentary succession paleogeography and deposits. These successions characterize the large extensional intracratonic Chaco rift basin system evolved from the Upper Cretaceous ( Late Campanian-Senonian-Maastrichtian-Early Paleocene) to Quaternary time. The siliciclastic littoral shallow marine successions were deposited from Early Senonian-Maastrichtian to Late Miocene during three main successive littoral shallow marine transgressions of continental extension.These transgressions happened over the wide pediplanized terrains of South America. These lands exist west of the more positive areas, between the Brazilian Shield and the foreland massifs that were settled in the more westernwards areas. Later, these regional foreland massifs were coupled and raised to the Andean Orogen Belt during the last 5 million years.The extensive intracratonic pediplanized low topographic relief areas were the reservoirs of siliciclastic littoral shallow marine succession deposits during the three successive widespread vast continental littoral shallow marine transgressions.The first transgression began at the Latest Campanian-Senonian and/or Early Maastrichtian time. After this episode, the sedimentary depositional systems continued during the Cenozoic until the Latest Miocene. These successions constitute a major allostratigraphic unit.The limit with underlying units is the regional unconformity between the regional volcanic event (Jurassic-Cretacic and interleaved eolianite sandstones) at the base and the undifferentiated Quaternary sediments (called as the Pampeano and Post-Pampeano Formations sensu lato). Based on many facies analyses there had been checked out different levels in the eustatic sea level variations within the allostratigraphic unit.Three major stages of extensional climax were recognized and related to the stages of conspicuous eustatical sea-level variations. They happened during the Latest Senonian-Paleocene, Eocene and Miocene.The first transgression occurred during the Upper Cretaceous-Paleocene although the sedimentary deposits related to this event are scarce, which are only a few meters in thickness. However, the Upper Cretaceous-Paleocene succession is very well recognized in the actual pre-Andean zone in the north-west of Argentina and Bolivia (the Sierras Subandinas and the meridional imbricated fault systems just joint to the actual orogen, I.e. , Quebrada de Humahuaca outcrops).During the Eocene and Middle to Latest Miocene occurred the second and third extensive regional littoral shallow marine transgressions. They are present either in well log registers as in most widespread outcrops on the entire Southamerican continent.The regional analysis led to the deduction of long periods of tectonic quiescence, at least three of them. They may be inferred and synchronously related with eustatic highstand sea level variations that occurred during the Late Paleocene-Early Eocene, Latest Eocene-Early to Mid Oligocene and Middle-to-Late Oligocene-Early Miocene.The structural style is related with major extensional N-S strike faultings (regional tilted and faulting blocks). On the other hand, quite a number of strike-slip faults (mainly of regional characteristic) are present crossing the area. They have a clear influence on the accommodation and transfer zones of the rift basin system. The strike is north-west to south-east on the border of the basin, to the west, in the contact with the Pampean Ridges and the narrow-meridionally-extense Sub-Andean folded trend ( mainly Paleozoic units belonging to the so-called Sierras Subandinas geological province). Also, at the western edge of the studied area, there exist many large shear zones and upthrust faults. The strike-slip regional faults dislocated the Pampean and Sub-Andean blocks due to the interaction of crossing regional tilted and fault blocks.For this reason, an en echelon regional block model is characteristic. Incipient contaminated igneous activities were associated with this cortical weak zones. Domes, needles and necks of volcanic and sub-volcanic origin appear as the landscape of the region.A part of the igneous activity was dated on Latest Pliocene although mainly corresponding to Pleistocene and Holocene. This deduction is obvious because their morphological constitution was never eroded. The volcanic aparatous are morphologically unmodified from their extrusion to present days.All the studied successions seem to resemble a long persisting erosive, transportation and deposition episode. This phenomenon is linked to a large regional (continental) unconformity dated at Late Cretaceous. The entire analyzed sedimentary succession deposits and their siliciclastic facies associations correspond clearly to a "heterolithic facies succession" which is very common within persisting tide-dominated depositional systems (passive margins). In fact, this is what happened during Cenozoic times (Torra,1998b, 2001a). The heterolithic Miocene facies deposits constitute one of the best continental exposed examples.Paleogeographical evidence showed that the Paranense and Amazonic Sea transgressions had been a littoral shallow marine connection during long time from Middle to Late Miocene. During the Late Cretaceous and Eocene periods marine connections were also active in the region. This fact is strongly supported by the tectonic and geomorphological framework of the proto-Southamerican continent, fossil remains and similar sedimentary deposits.The geochemical results showed an outstanding similarity among the three sandy-muddy successions herein studied. Both major and trace elements always show the same geochemical patterns. Specially mentioned are the elements gallium, cesium, chromium, barium, vanadium, thorium, zirconium, rubidium and strontium because they present very constant values through all successions.The Paranense and Amazonic epicontinental seas had been connected to the Pacific Ocean during the three marine episodes. The connections were formed by narrow inter-mountain valleys, present in the preAndean foreland massifs. These events occurred prior to the main orogenesis elevation of the Andean orogen belt in the last 5 to 1 Ma ( Pliocene-Latest Pleistocene).This paper shows, for the first time, a synthetic stratigraphical-geochemical "regional model" for the carries many unexamined-unexplored natural resources which need more regional and local studies for their evaluation. This is in spite of the area that has the problem of a significative vegetation coberture and scarce good outcrops. The development of modern techniques of dataacquisition will help to overcome these difficulties.  相似文献   
973.
The wide boron isotopic variations occurring in natural waters mainly are derived from the 20‰ fractionation between dissolved boric acid and borate anions, associated with the preferential removal from the system of 11B depleted borate ions by adsorption and/or minerals formation. Typical adsorbants of boron dissolved in groundwater are clay minerals of the aquifer matrix. Boron (and strontium) isotopes were used in investigating two alluvial aquifers in Tuscany, where boron concentration is often above 1 mg L− 1 and may attain 8 mg L− 1. The isotopic results indicate that, in the first case (Cecina River basin), the boron contamination is anthropogenic and derives from past discharge into streams of boron-rich industrial wastes. In the second case (Cornia Plain), the dissolved boron is released by boron-rich clayey sediments of the aquifer matrix and has, therefore, a natural origin.  相似文献   
974.
A methodology is proposed for the inference, at the regional and local scales, of flood magnitude and associated probability. Once properly set-up, this methodology is able to provide flood frequencies distributions at gauged and un-gauged river sections pertaining to the same homogeneous region, using information extracted from rainfall observations. A proper flood frequency distribution can be therefore predicted even in un-gauged watersheds, for which no discharge time series is available.  相似文献   
975.
The most conspicuous waterbodies in the Pampa region of Argentina are the so-called “lagunas”. A typical Pampean laguna may be described as a relatively large (100+ha), permanent, shallow lake. Here, we report the dynamics of laguna Chascomús, sampled weekly, from April 2001 to June 2003. During the period, the lakes experienced three consecutive floods waves that affected the concentration of major ions and the optical signature of the dissolved organic matter. Despite these hydrological alterations, laguna Chascomús was permanently limited by light. Transparency was to a great extent controlled by the incident photosynthetic available radiation irradiance. We hypothesize that wind contributes to the permanent mixing of the lake, as well as to lessen the sedimentation losses of photoautotrophs.  相似文献   
976.
The interaction between surface and subsurface water has a crucial influence on the biochemistry of stream environments. Even though the river discharge and the flow conditions can seldom be considered to be steady, the influence of this unsteadiness on the hyporheic exchange has often been neglected. In this work, a model for the study of hyporheic exchange during unsteady conditions has been developed. The model provides a sound analytical framework for the analysis of the effects of a varying stream discharge on the exchange between a stream and the hyporheic zone. The effects of the unsteadiness on the water exchange flux, the residence time of the solutes in the bed, and the stored mass are quantified. A synthetic example shows the substantial influence of a flood on the hyporheic exchange, and that the application of a steady model can lead to an underestimation of the exchanged mass, even after the flood has ended.  相似文献   
977.
We present the basic concepts of the two-mirror, three-reflection optical system (2MTRT), and discuss the important benefits of such a system for space projects: wide ( 2°) correctedand unvignetted FOV, without the use of refractive optics for thefield correction, planarity of the focal surface for an optimizedinstallation of wide area detectors, easy telescope adjustement, small volume and little mass.We also report the results of optical tests made with a 30 cm prototype,equipped with a 2k × 2k CCD camera, and give examples of scientific programmes which can be performed from space and in hostile terrestrial sites such as the Antarctic Plateau.  相似文献   
978.
979.

This study presents near future (2020–2044) temperature and precipitation changes over the Antarctic Peninsula under the high-emission scenario (RCP8.5). We make use of historical and projected simulations from 19 global climate models (GCMs) participating in Coupled Model Intercomparison Project phase 5 (CMIP5). We compare and contrast GCMs projections with two groups of regional climate model simulations (RCMs): (1) high resolution (15-km) simulations performed with Polar-WRF model forced with bias-corrected NCAR-CESM1 (NC-CORR) over the Antarctic Peninsula, (2) medium resolution (50-km) simulations of KNMI-RACMO21P forced with EC-EARTH (EC) obtained from the CORDEX-Antarctica. A further comparison of historical simulations (1981–2005) with respect to ERA5 reanalysis is also included for circulation patterns and near-surface temperature climatology. In general, both RCM boundary conditions represent well the main circulation patterns of the historical period. Nonetheless, there are important differences in projections such as a notable deepening and weakening of the Amundsen Sea Low in EC and NC-CORR, respectively. Mean annual near-surface temperatures are projected to increase by about 0.5–1.5 \(^{\circ }\)C across the entire peninsula. Temperature increase is more substantial in autumn and winter (\(\sim \) 2 \(^{\circ }\)C). Following opposite circulation pattern changes, both EC and NC-CORR exhibit different warming rates, indicating a possible continuation of natural decadal variability. Although generally showing similar temperature changes, RCM projections show less warming and a smaller increase in melt days in the Larsen Ice Shelf compared to their respective driving fields. Regarding precipitation, there is a broad agreement among the simulations, indicating an increase in mean annual precipitation (\(\sim \) 5 to 10%). However, RCMs show some notable differences over the Larsen Ice Shelf where total precipitation decreases (for RACMO) and shows a small increase in rain frequency. We conclude that it seems still difficult to get consistent projections from GCMs for the Antarctic Peninsula as depicted in both RCM boundary conditions. In addition, dominant and common changes from the boundary conditions are largely evident in the RCM simulations. We argue that added value of RCM projections is driven by processes shaped by finer local details and different physics schemes that are introduced by RCMs, particularly over the Larsen Ice Shelf.

  相似文献   
980.
New evidences based on a combination of field and laboratory investigations reinforce the hypotheses that the circulation of warm fluids has remarkably contributed to the origin and development of the Devonian Kess Kess mounds of the Hamar Laghdad Ridge (eastern Anti‐Atlas, Morocco). The limestones of the Hamar Laghdad Ridge were deposited above a structural high generated by calc‐alkaline volcanic activity that has probably fuelled the circulation of warm fluids throughout the overlying carbonate units. The geological and palaeontological attributes described throughout the succession of the Hamar Laghdad Ridge (from the Lochkovian to Frasnian intervals) are interpreted as the result of hydrothermal processes related to a volcanic system. In particular, these attributes seem consistent with a chemo‐physical environment fuelled by the circulation of warm and late magmatic fluids. These attributes include a very low oxygen stable isotope signature (δ18O ~ −10‰) for carbonates. Evidences for a late magmatic fluid circulation consist of volcanic glass and pyroclasts replacement with hydrothermal minerals such as quartz, anatase and clinochlore. Fluids circulating through veins and pores into sediments, and venting to the seafloor, probably induced the formation of cavities where monospecific trilobite communities were detected. The partially silicified trilobite remains are associated with traces of goethite. This iron‐bearing oxide mineral is also present in the upper part of the Hamar Laghdad Ridge. All these attributes are here interpreted as possible evidences for a low‐temperature hydrothermal venting system active during the Lochkovian–Frasnian time span. This study combines an updated revision with new petrographic, geological and geochemical results aimed at providing an overall framework on the origin and early diagenesis of the Devonian succession of Hamar Laghdad. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号